
[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 883 883–917

A resolution-based calculus for
Coalition Logic

CLÁUDIA NALON, Departament of Computer Science, University of Brasília,
C. P. 4466, CEP:70.910-090, Brasília, DF, Brazil.
E-mail: nalon@unb.br

LAN ZHANG, Information School, Capital University of Economics and
Business, Beijing 100070, China.
E-mail: lan@cueb.edu.cn

CLARE DIXON and ULLRICH HUSTADT, Department of Computer Science,
University of Liverpool, Liverpool, L69 3BX, UK.
E-mail: CLDixon@liverpool.ac.uk; U.Hustadt@liverpool.ac.uk

Abstract
We present a resolution-based calculus for Coalition Logic CL, a non-normal modal logic used for reasoning about cooperative
agency. We introduce a normal form and a set of inference rules to solve the satisfiability problem in CL. We also show that
the calculus presented here is sound, complete, and terminating.

Keywords: Coalition logic, theorem-proving, resolution method.

1 Introduction

Coalition Logic CL was introduced in [16] as a logic for reasoning about cooperative agency, that is,
a formalism intended to describe the ability of groups of agents to achieve an outcome in a strategic
game. CL has been used for verification of properties of voting procedures [16] and reasoning about
strategic games [17].

CL is a multi-modal logic with modal operators of the form [A], where A is a set of agents. The
formula [A]ϕ, where A is a set of agents and ϕ is a formula, reads as the coalition of agents A has
the ability of bringing about ϕ or the coalition of agents A has a strategy to achieve ϕ. We note that
if a set of agents has a strategy for achieving ϕ and a strategy for achieving ψ , then this does not
mean that in general they have a strategy for achieving ϕ∧ψ . Thus, CL is a non-normal modal logic,
that is, the schema that represents the additivity principle, [A]ϕ∧[A]ψ⇒[A](ϕ∧ψ), is not valid.
However, the monotonicity principle, given by [A](ϕ∧ψ)⇒[A]ϕ∧[A]ψ , holds.

Coalition Logic is closely related to Alternating-Time Temporal Logic, ATL, given in [1, 2]
and revisited in [3]. In fact, CL is equivalent to the next-time fragment of ATL [8], where [A]ϕ
translates into 〈〈A〉〉 �ϕ (read as the coalition A can ensure ϕ at the next moment in time). The
satisfiability problems for ATL and CL are EXPTIME-complete [20] and PSPACE-complete [17],
respectively.

Vol. 24 No. 4, © The Author, 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Published online January 21, 2014 doi:10.1093/logcom/ext074

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 884 883–917

884 A resolution-based calculus for Coalition Logic

Methods for tackling the satisfiability problem for these logics include, for instance, two tableau-
based methods for ATL [9, 20], two automata-based methods [6, 10] for ATL, and one tableau-based
method for CL [12]. As to the best of our knowledge, no resolution-based method has been developed
for either ATL or CL. Providing a resolution method for CL gives the user a choice of proof methods.
Several comparisons of tableau algorithms and resolution methods [11, 13] indicate that there is
no overall best approach: for some classes of formulae tableau algorithms perform better whilst on
others resolution performs better. So, with a choice of different provers, for the best result the user
could run several in parallel or the one most likely to succeed depending on the type of the input
formulae.

In this article, we present a resolution-based calculus for CL, RESCL. The method can be seen as a
(syntactic) variation of the resolution calculus for the next-time fragment of ATL introduced in [22],
where soundness and termination proofs are given, but where the completeness proof is omitted. We
provide the full correctness results here. The completeness proof for RESCL is given relative to the
tableau calculus in [9]. If a formula is unsatisfiable, the corresponding tableau is closed. We show that
deletions that produce the closed tableau correspond to applications of the resolution inference rules
given by the method presented here. Establishing the completeness result with respect to the tableau
procedure simplifies the proofs. For CL, we could have chosen to prove completeness relatively
to the simpler tableau-based method given in [12]. However, the tableau-based method in [9] has
a formulation that is closer to that of the resolution method presented here, that is, it works with
one-sided sequents whilst the tableau-based method in [12] works with two-sided sequents. We also
note that, although [12] presents a method for ATL, neither soundness nor completeness proofs are
presented. As it is our intention to extend the method presented here to full ATL, the same technique
can be used later, in a modular way, to provide correctness results for a resolution-based calculus
for ATL.

This article is organized as follows. In the next section, we present the syntax, axiomatization
and semantics of CL. In Section 3, we introduce the resolution-based method for CL and provide a
few examples. Correctness results are given in Section 4. Conclusions and future work are given in
Section 5. An extended version of this article can be found in [15].

2 Coalition logic

In the following we present the syntax, axiomatization and semantics of CL.

2.1 Syntax

As in [9], we define �⊂N to be a finite, non-empty set of agents. A coalition A is a subset of �.
Formulae in CL are constructed from propositional symbols and constants, together with Boolean
operators and coalition modalities. A coalition modality is either of the form [A]ϕ or 〈A〉ϕ, where
ϕ is a well-formed CL formula. The coalition operator 〈A〉 is the dual of [A], where A is a coalition,
that is, 〈A〉ϕ is an abbreviation for ¬[A]¬ϕ, for every formula ϕ.

Definition 2.1
The set of CL well-formed formulae, WFFCL, is given by:

– constants: {true,false};
– propositional symbols: �={p,q,r,...,p1,q1,r1,...};

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 885 883–917

A resolution-based calculus for Coalition Logic 885

– classical formulae: if ϕ,ψ ∈WFFCL, then so are ¬ϕ (negation), (ϕ∧ψ) (conjunction), (ϕ∨ψ)
(disjunction), and (ϕ⇒ψ) (implication);

– coalition formulae: if ϕ∈WFFCL, then so are [A]ϕ and 〈A〉ϕ , where A⊆�.

Parentheses will be omitted if the reading is not ambiguous. By convenience, formulae of the form∨
ϕi (resp.

∧
ϕi), 1≤ i≤n, n∈N, ϕi ∈WFFCL, represent arbitrary disjunction (resp. conjunction) of

formulae. If n=0,
∨
ϕi is called the empty disjunction, denoted by false, while

∧
ϕi is called the

empty conjunction denoted by true. Also, when enumerating a specific set of agents, we often omit
the curly brackets. For example, we write [1,2]ϕ as an abbreviation for [{1,2}]ϕ, for a formula ϕ. In
the following, we use ‘formula(e)’ and ‘well-formed formula(e)’ interchangeably.

Definition 2.2
Let � be the set of propositional symbols. A literal is either p or ¬p, for p∈�. For a literal l of the
form ¬p, where p is a propositional symbol, ¬l denotes p; for a literal l of the form p, ¬l denotes
¬p. The literals l and ¬l are called complementary literals.

Let ϕ∈WFFCL, � the set of all agents, and A⊆�. As in [9], a positive coalition formula (resp.
negative coalition formula) is a formula of the form [A]ϕ (resp. 〈A〉ϕ). A coalition formula is
either a positive or a negative coalition formula.

2.2 Axiomatization

As presented in [17], coalition logic can be axiomatised by the following schemata (where A,A′ are
coalitions and ϕ,ϕ1, ϕ2 are well-formed formulae):

⊥ : ¬[A]false

 : [A]true
� : ¬[∅]¬ϕ⇒[�]ϕ
M : [A](ϕ1 ∧ϕ2)⇒[A]ϕ1
S : [A]ϕ1 ∧[A′]ϕ2 ⇒[A∪A′](ϕ1 ∧ϕ2), if A∩A′ =∅

together with propositional tautologies and the following inference rules: modus ponens (from ϕ1
and ϕ1 ⇒ϕ2 infer ϕ2) and equivalence (from ϕ1 ⇔ϕ2 infer [A]ϕ1 ⇔[A]ϕ2). It can be shown that
the inference rule monotonicity (from ϕ1 ⇒ϕ2 infer [A]ϕ1 ⇒[A]ϕ2) is a derivable rule in this
system.

Example 2.3
We show that the formula

[A]ψ1 ∧〈B〉ψ2 ⇒〈B\A〉(ψ1 ∧ψ2)

where A and B are coalitions, A⊆B, and ψ1,ψ2 ∈WFFCL, is valid:

1. [A]ψ1 ∧[B\A](ψ1 ⇒¬ψ2)⇒[B](ψ1 ∧(ψ1 ⇒¬ψ2)) S,A′ =B\A,ϕ1 =ψ1,ϕ2 =ψ1 ⇒¬ψ2
2. ψ1 ∧(ψ1 ⇒¬ψ2)⇒¬ψ2 propositional tautology
3. [B](ψ1 ∧(ψ1 ⇒¬ψ2))⇒[B]¬ψ2 2, monotonicity
4. [A]ψ1 ∧[B\A](ψ1 ⇒¬ψ2)⇒[B]¬ψ2 1,3, chaining
5. [A]ψ1 ∧¬[B]¬ψ2 ⇒¬[B\A](¬ψ1 ∨¬ψ2) 4, rewriting
6. [A]ψ1 ∧〈B〉¬¬ψ2 ⇒〈B\A〉¬(¬ψ1 ∨¬ψ2) 5, def. dual
7. [A]ψ1 ∧〈B〉ψ2 ⇒〈B\A〉(ψ1 ∧ψ2) 6, rewriting

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 886 883–917

886 A resolution-based calculus for Coalition Logic

2.3 Semantics

Semantics of CL is usually given in terms of Multiplayer Game Models (MGMs) [16]. However, we
follow the presentation in [3, 9], which uses Concurrent Game Structures (CGSs) for describing the
semantics of ATL. MGMs yield the same set of validities as CGSs [8].

The semantics of CL is positional, that is, agents have no memory of their past decisions and, thus,
those decisions are made by taking into account only the current state. Also, the semantics given here
is based on pointed-models, as we are interested in the structures together with a distinguished state
where the valuation takes place. Restricting the models to pointed ones does not change the class
of validities and it is useful in the proofs later presented in this work; for further discussion about
pointed-models, see, for instance, [4].

Definition 2.4
A Concurrent Game Frame (CGF) is a tuple F = (�,S,s0,d,δ), where

– � is a finite non-empty set of agents;
– S is a non-empty set of states, with a distinguished state s0;
– d :�×S −→N

+, where the natural number d(a,s)≥1 represents the number of moves that
the agent a has at the state s. Every move for agent a at the state s is identified by a number
between 0 and d(a,s)−1. Let D(a,s)={0,...,d(a,s)−1} be the set of all moves available to
agent a at s. For a state s, a move vector is a k-tuple (σ1,...,σk), where k =|�|, such that
0≤σa ≤d(a,s)−1, for all a∈�. Intuitively, σa represents an arbitrary move of agent a in s.
Let D(s)=�a∈�D(a,s) be the set of all move vectors at s. We denote by σ an arbitrary member
of D(s).

– δ is a transition function that assigns to every s∈S and every σ ∈D(s) a state δ(s,σ)∈S that
results from s if every agent a∈� plays move σa.

In the following, let F = (�,S,s0,d,δ) be a CGF with s,s′ ∈S. We say that s′ is a successor of s
(an s-successor) if s′ =δ(s,σ), for some σ ∈D(s).

Let κ be a tuple. We write κn (or κ(n)) to refer to the n-th element of κ .

Definition 2.5
Let |�|=k and let A⊆� be a coalition. An A-move σA at s∈S is a k-tuple such that σA(a)∈D(a,s)
for every a∈A and σA(a′)=∗ (i.e. an arbitrary move) for every a′ �∈A. We denote by D(A,s) the set
of all A-moves at state s.

Definition 2.6
A move vector σ extends an A-move vector σA, denoted by σA �σ or σ �σA, if σ (a)=σA(a) for
every a∈A.

Given a coalition A⊆�, an A-move σA ∈D(A,s), and a �\A-move σ�\A ∈D(�\A,s), we
denote by σA�σ�\A the unique σ ∈D(s) such that both σA �σ and σ�\A �σ .

Definition 2.7
Let σA ∈D(A,s) be an A-move. The outcome of σA at s, denoted by out(s,σA), is the set of all states
s′ ∈S for which there exists a move vector σ ∈D(s) such that σA �σ and δ(s,σ)=s′.

Definition 2.8
A Concurrent Game Model (CGM) is a tuple M= (F,�,π), where F = (�,S,s0,d,δ) is a CGF;
� is the set of propositional symbols; and π :S −→2� is a valuation function.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 887 883–917

A resolution-based calculus for Coalition Logic 887

Definition 2.9
Let M= (�,S,s0,d,δ,�,π) be a CGM with s∈S. The satisfaction relation, denoted by |=, is
inductively defined as follows.

– 〈M,s〉 |= true;
– 〈M,s〉 |=p iff p∈π (s), for all p∈�;
– 〈M,s〉 |=¬ϕ iff 〈M,s〉 �|=ϕ;
– 〈M,s〉 |=ϕ∧ψ iff 〈M,s〉 |=ϕ and 〈M,s〉 |=ψ ;
– 〈M,s〉 |=[A]ϕ iff there exists a A-move σA ∈D(A,s) s.t. 〈M,s′〉 |=ϕ for all s′ ∈out(s,σA);
– 〈M,s〉 |=〈A〉ϕ iff for all A-moves σA ∈D(A,s) exists s′ ∈out(s,σA) s.t. 〈M,s′〉 |=ϕ.

Semantics of false, disjunctions and implications are given in the usual way. Given a model M, a
state s in M, and a formula ϕ, if 〈M,s〉 |=ϕ, s∈S, we say that ϕ is satisfied at the state s in M.
Satisfiability of a formula in a model is defined next.

As discussed in [9, 16, 20] three different notions of satisfiability emerge from the relation between
the set of agents occurring in a formula and the set of agents in the language. It turns out that all those
notions of satisfiability can be reduced to tight satisfiability, that is, when the evaluation of a formula
takes into consideration only the agents occurring in such formula [20]. In this work, we will consider
this particular notion of satisfiability. We denote by �ϕ , where �ϕ⊆�, the set of agents occurring
in a well-formed formula ϕ. If
 is a set of well-formed formulae, �
⊆� denotes

⋃
ϕ∈
�ϕ . Let

ϕ∈WFFCL and M= (�ϕ,S,s0,d,δ,�,π) be a CGM. Formulae are interpreted with respect to the
distinguished world s0. Thus, a formula ϕ is said to be satisfiable in M, denoted by M |=ϕ, if
〈M,s0〉 |=ϕ; it is said to be satisfiable if there is a model M such that 〈M,s0〉 |=ϕ; and it is said to
be valid if for all models M we have 〈M,s0〉 |=ϕ. A finite set �⊂WFFCL is satisfiable in a state
s in M, denoted by 〈M,s〉 |=�, if for all γi ∈�, 0≤ i≤n, 〈M,s〉 |=γi; � is satisfiable in a model
M, M |=�, if 〈M,s0〉 |=�; and � is satisfiable, if there is a model M such that M |=�.

3 Resolution calculus

The resolution calculus for CL, denoted by RESCL, is based on that given in [22]. A formula to
be tested for (un)satisfiability is translated into a coalition problem in divided separated normal
form which, roughly speaking, separates the different contexts (formulae which are true only at the
initial state; formulae which are true in all states without coalition operators, and formulae which
are true in all states that include coalition operators) to which a set of resolution-based inference
rules are applied. We present the normal form in the next section and the inference rules are given in
Section 3.2. Examples are given within those sections.

3.1 Normal form

The resolution-based calculus for CL, RESCL, operates on sets of clauses. A formula in CL is firstly
converted into a coalition problem, which is then transformed into a coalition problem in Divided
Separated Normal Form for Coalition Logic, DSNFCL.

Definition 3.1
A coalition problem is a tuple (I,U,N), where I, the set of initial formulae, is a finite set of
propositional formulae; U , the set of global formulae, is a finite set of formulae in WFFCL; and
N , the set of coalition formulae, is a finite set of coalition formulae, i.e. those formulae in which a
coalition modality occurs.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 888 883–917

888 A resolution-based calculus for Coalition Logic

The semantics of coalition problems assumes that initial formulae hold at the initial state; and that
global and coalition formulae hold at every state of a model. Formally, the semantics of coalition
problems is defined as follows.

Definition 3.2
Given a coalition problem C = (I,U,N), we denote by�C the set of agents�U∪N . If C = (I,U,N) is
a coalition problem and M= (�C,S,s0,d,δ,�,π) is a CGM, then M |=C if, and only if, 〈M,s0〉 |=I
and 〈M,s〉 |=U ∪N , for all s∈S. We say that C = (I,U,N) is satisfiable, if there is a model M such
that M |=C.

In order to apply the resolution method, we further require that formulae within each of those sets
are in clausal forms. These categories of clauses have the following syntactic form:

initial clauses
∨n

j=1 lj

global clauses
∨n

j=1 lj

positive coalition clauses
∧m

i=1 l′i ⇒ [A]∨n
j=1 lj

negative coalition clauses
∧m

i=1 l′i ⇒ 〈A〉∨n
j=1 lj

where m,n≥0 and l′i,lj, for all 1≤ i≤m, 1≤ j≤n, are literals or constants. Clauses are kept in
the simplest form: literals in conjunctions and disjunctions are always pairwise different; constants
true and false are removed from conjunctions and disjunctions with more than one conjunct/disjunct,
respectively; conjunctions (resp. disjunctions) with either complementary literals or false (resp. true)
are simplified to false (resp. true). Also, the tautologies true, false⇒ϕ, and ϕ⇒ true are removed
from the sets of clauses.

Definition 3.3
Acoalition problem in DSNFCL is a coalition problem (I,U,N) such that I is a set of initial clauses,
U is a set of global clauses, and N is a set of positive and negative coalition clauses.

Transformation rules: the transformation of a coalition logic formula into a coalition problem
in DSNFCL is analogous to the approach taken in [5], where first-order temporal formulae are
transformed into a Divided Separated Normal Form (DSNF), by means of renaming [18] and
rewriting of temporal operators by simulating their fix-point representation. The transformation
reduces the number of operators and separates the contexts to which the resolution inference rules
are applied.

The transformation into the normal form used here is given by a set of rewrite rules. Letϕ∈WFFCL
be a formula and τ0(ϕ) be the transformation of ϕ into the Negation Normal Form (NNF), that is,
the formula obtained from ϕ by pushing negation inwards, so that negation symbols occur only next
to propositional symbols. The transformation into NNF uses the following rewrite rules:

ϕ⇒ψ −→ ¬ϕ∨ψ
¬(ϕ∧ψ) −→ ¬ϕ∨¬ψ
¬(ϕ∨ψ) −→ ¬ϕ∧¬ψ

¬(ϕ⇒ψ) −→ ϕ∧¬ψ

¬¬ϕ −→ ϕ

¬[A]ϕ −→ 〈A〉¬ϕ
¬〈A〉ϕ −→ [A]¬ϕ

In addition, we want to remove occurrences of the constants true and false as well as duplicates of
formulae in conjunctions and disjunctions. This is achieved by exhaustively applying the following

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 889 883–917

A resolution-based calculus for Coalition Logic 889

simplification rules (where conjunctions and disjunctions are commutative):

ϕ∧true −→ ϕ

ϕ∨true −→ true
ϕ∧false −→ false
ϕ∨false −→ ϕ

¬true −→ false

¬false −→ true
ϕ∨ϕ −→ ϕ

ϕ∧ϕ −→ ϕ

ϕ∨¬ϕ −→ true
ϕ∧¬ϕ −→ false

[A]true −→ true
[A]false −→ false
〈A〉true −→ true
〈A〉false −→ false

Given a formula ϕ, we start its transformation into a coalition problem (I,U,N) in DSNFCL by
exhaustively applying the rewriting rules given below, together with simplification, to the tuple
({t0},{t0 ⇒τ0(ϕ)},{}), where t0 is a new propositional symbol and τ0(ϕ) is the transformation of ϕ
into NNF. For classical operators, we have the following rewriting rules (where t is a literal; ϕ1 and
ϕ2 are formulae; t1 is a new propositional symbol; and disjunctions are commutative):

τ∧ (I,U ∪{t ⇒ϕ1 ∧ϕ2},N) −→ (I,U ∪{t ⇒ϕ1,t ⇒ϕ2},N)
τ∨ (I,U ∪{t ⇒ϕ1 ∨ϕ2},N) −→ (I,U ∪{t ⇒ϕ1 ∨t1,t1 ⇒ϕ2},N)

where ϕ2 is not a disjunction of literals
τ⇒ (I,U ∪{t ⇒D},N) −→ (I,U ∪{¬t∨D},N)

where D is either a constant or a disjunction of literals
(I,U ∪{t ⇒D},N) −→ (I,U,N ∪{t ⇒D})

where D is either of the form [A]ϕ1 or 〈A〉ϕ1

Note that, as disjunction is commutative, the rewriting rule τ∨ also applies to (I,U ∪{t ⇒ϕ2 ∨ϕ1},N),
where ϕ1 is not a disjunction. The rules for renaming complex formulae in the scope of coalition
modalities are given below, where A is a coalition and�ϕ is the set of agents occurring in the original
formula ϕ.

τ[A] (I,U,N ∪{t ⇒[A]ϕ1}) −→ (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒[A]t1})
where ϕ is not a disjunction of literals

τ〈A〉,A�=�ϕ (I,U,N ∪{t ⇒〈A〉ϕ1}) −→ (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒〈A〉t1})
where ϕ is not a disjunction of literals
and A �=�ϕ

τ〈�ϕ〉 (I,U,N ∪{t ⇒〈�ϕ〉ϕ1}) −→ (I,U,N ∪{t ⇒[∅]ϕ1})

The transformation is linear in the size of the original formula [22]. We now show an example of
an application of the transformation rules.

Example 3.4
Consider the formula ¬([1](p∧q)∧[1](q∧r)⇒[1]p∧[1]q∧[1]r), whose transformation into NNF is ϕ=
[1](p∧q)∧[1](q∧r)∧(〈1〉¬p∨〈1〉¬q∨〈1〉¬r). The transformation into DSNFCL starts from 〈{t0},{t0 ⇒
ϕ},{}〉, and proceeds as follows:

1. t0 [I]
2. t0 ⇒ϕ [U]
3. t0 ⇒[1](p∧q)∧[1](q∧r) [U,τ∧,2]
4. t0 ⇒〈1〉¬p∨〈1〉¬q∨〈1〉¬r [U,τ∧,2]

5. t0 ⇒[1](p∧q) [U,τ∧,3]
6. t0 ⇒[1](q∧r) [U,τ∧,3]
7. t0 ⇒[1]t1 [N,τ[A],5]
8. t1 ⇒ (p∧q) [U,τ[A],5]

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 890 883–917

890 A resolution-based calculus for Coalition Logic

9. t0 ⇒[1]t2 [N,τ[A],6]
10. t2 ⇒ (q∧r) [U,τ[A],6]
11. t0 ⇒ t3 ∨〈1〉¬q∨〈1〉¬r [U,τ∨,4]
12. t3 ⇒〈1〉¬p [U,τ∨,4]
13. t3 ⇒〈1〉¬p [N,τ⇒,12]
14. t0 ⇒ t3 ∨t4 ∨〈1〉¬r [U,τ∨,11]
15. t4 ⇒〈1〉¬q [U,τ∨,11]
16. t4 ⇒〈1〉¬q [N,τ⇒,15]
17. t0 ⇒ t3 ∨t4 ∨t5 [U,τ∨,14]
18. t5 ⇒〈1〉¬r [U,τ∨,14]
19. t5 ⇒〈1〉¬r [N,τ⇒,18]
20. t3 ⇒[∅]¬p [N,τ〈�ϕ〉,13]

21. t3 ⇒[∅]¬q [N,τ〈�ϕ〉,16]
22. t3 ⇒[∅]¬r [N,τ〈�ϕ〉,19]
23. t1 ⇒p [U,τ∧,8]
24. t1 ⇒q [U,τ∧,8]
25. t2 ⇒q [U,τ∧,10]
26. t2 ⇒r [U,τ∧,10]
27. ¬t0 ∨t3 ∨t4 ∨t5 [U,τ⇒,17]
28. ¬t1 ∨p [U,τ⇒,23]
29. ¬t1 ∨q [U,τ⇒,24]
30. ¬t2 ∨q [U,τ⇒,25]
31. ¬t2 ∨r [U,τ⇒,26]

The transformation results in the following coalition problem in DSNFCL (I,U ,N):

I = {1. t0} U = {27. ¬t0 ∨t3 ∨t4 ∨t5,
28. ¬t1 ∨p,
29. ¬t1 ∨q,
30. ¬t2 ∨q,
31. ¬t2 ∨r}

N = {07. t0 ⇒[1]t1,
9. t0 ⇒[1]t2,

20. t3 ⇒[∅]¬p,
21. t4 ⇒[∅]¬q,
22. t5 ⇒[∅]¬r}

3.2 Inference rules

Let (I,U,N) be a coalition problem in DSNFCL; C,C′ be conjunctions of literals; D,D′ be
disjunctions of literals; l,li be literals; and A,B⊆� be coalitions (where � is the set of all agents).

Classical resolution: the first rule, IRES1, is classical resolution applied to clauses which are true
at the initial state. The next inference rule, GRES1, performs resolution on clauses which are true in
all states.

IRES1 D∨l ∈I
D′∨¬l ∈I∪U
D∨D′

GRES1 D∨l ∈U
D′∨¬l ∈U
D∨D′

Coalition resolution: the following rules perform resolution on clauses which are true at the
successor states.

CRES1 C ⇒ [A](D∨l) ∈N
A∩B=∅ C′ ⇒ [B](D′∨¬l) ∈N

C∧C′ ⇒ [A∪B](D∨D′)

CRES2 D∨l ∈U
C ⇒ [A](D′∨¬l) ∈N
C ⇒ [A](D∨D′)

CRES3 C ⇒ [A](D∨l) ∈N
A⊆B C′ ⇒ 〈B〉(D′∨¬l) ∈N

C∧C′ ⇒ 〈B\A〉(D∨D′)

CRES4 D∨l ∈U
C ⇒ 〈A〉(D′∨¬l) ∈N
C ⇒ 〈A〉(D∨D′)

Rewriting rules:

RW1
∧n

i=1 li ⇒[A]false ∈N∨n
i=1¬li

RW2
∧n

i=1 li ⇒〈A〉false ∈N∨n
i=1¬li

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 891 883–917

A resolution-based calculus for Coalition Logic 891

Note that the axioms ⊥ and
, given by ¬[A]false and [A]true, respectively, imply that the
consequent in both rewriting rules cannot be satisfied. Thus, the conclusions from both rewriting
rules ensure that

∧n
i=1 li should not be satisfied at any state.

Definition 3.5
A derivation from a coalition problem in DSNFCL C = (I,U,N) by RESCL is a sequence
C0,C1,C2,... of problems such that C0 =C, Ci = (I i,U i,N i), and Ci+1 is either

– (I i ∪{D},U i,N i), where D is the conclusion of an application of IRES1;
– (I i,U i ∪{D},N i), where D is the conclusion of an application of GRES1, RW1, or RW2; or
– (I i,U i,N i ∪{D}), where D is the conclusion of an application of CRES1, CRES2, CRES3,

or CRES4 ;

and D �∈ {true,false⇒ϕ,ϕ⇒ true}, for any formula ϕ.

We note that the resolvent D is not a tautology and it is always kept in the simplest form: duplicate
literals are removed; constants true and false are removed from conjunctions and disjunctions
with more than one conjunct/disjunct, respectively; conjunctions (resp. disjunctions) with either
complementary literals or false (resp. true) are simplified to false (resp. true).

Definition 3.6
A refutation for a coalition problem in DSNFCL C = (I,U,N) (by RESCL) is a derivation from C
such that for some i≥0, Ci = (I i,U i,N i) contains a contradiction, where a contradiction is given by
either false∈I i or false∈U i.

A derivation terminates if, and only if, either a contradiction is derived or no new clauses can be
derived by further application of resolution rules of RESCL.

Example 3.7
In order to verify the validity of the formula

[1](p∧q)∧[1](q∧r)⇒[1]p∧[1]q∧[1]r
we apply the resolution method to the coalition problem in DSNFCL given in Example 3.4, which shows the
transformation of its negation. Note that the original formula is in fact valid. Recall that the monotonicity
principle, which holds in CL, is expressed by the schema [A](ϕ∧ψ)⇒[A]ϕ∧[A]ψ , where ϕ and ψ are
CL formulae and A is a coalition. Therefore, by monotonicity and by propositional reasoning, we have that
[1](p∧q)∧[1](q∧r) implies ([1]p∧[1]q)∧([1]q∧[1]r). The proof that the corresponding coalition problem in
DSNFCL is indeed unsatisfiable is presented below. The full proof, where clauses (1)-(11) from Example 3.4
have been renumbered, is given below:

1. t0 [I]
2. ¬t0 ∨t3 ∨t4 ∨t5 [U]
3. ¬t1 ∨p [U]
4. ¬t1 ∨q [U]
5. ¬t2 ∨q [U]
6. ¬t2 ∨r [U]
7. t0 ⇒ [1]t1 [N]
8. t0 ⇒ [1]t2 [N]
9. t3 ⇒ [∅]¬p [N]

10. t4 ⇒ [∅]¬q [N]
11. t5 ⇒ [∅]¬r [N]

12. t5 ⇒ [∅]¬t2 [N,CRES2,11,6]
13. t4 ⇒ [∅]¬t1 [N,CRES2,10,4]
14. t3 ⇒ [∅]¬t1 [N,CRES2,9,3]
15. t0 ∧t5 ⇒ [1]false [N,CRES1,12,8]
16. t0 ∧t4 ⇒ [1]false [N,CRES1,13,7]
17. t0 ∧t3 ⇒ [1]false [N,CRES1,14,7]
18. ¬t0 ∨¬t5 [U,RW1,15]
19. ¬t0 ∨¬t4 [U,RW1,16]
20. ¬t0 ∨¬t3 [U,RW1,17]
21. ¬t0 ∨t3 ∨t4 [U,GRES1,18,2]
22. ¬t0 ∨t3 [U,GRES1,21,19]
23. ¬t0 [U,GRES1,22,20]
24. false [I,IRES1,23,1]

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 892 883–917

892 A resolution-based calculus for Coalition Logic

4 Correctness results

In the previous section, we introduced a resolution-based method for CL. We now provide the
correctness results, that is, soundness, termination and completeness results for this method. The
soundness proof shows that the transformation into DSNFCL as well as the application of the inference
rules are satisfiability preserving. Termination is ensured by the fact that a given set of clauses contains
only finitely many propositional symbols, from which only finitely many DSNFCL clauses can be
constructed and therefore only finitely many new DSNFCL clauses can be derived. Completeness is
proved by showing that if a given set of clauses is unsatisfiable, there is a refutation produced by
RESCL. This corresponds to refutational completeness. The resolution calculus presented here, just
as the tableau methods for CL [9, 12], is not intended as a deductively complete proof method, that
is, a calculus which derives all possible consequences from a coalition problem in DSNFCL. For
instance, we do not resolve literals in the global set of clauses with literals on the left-hand side of
clauses in the coalition set, although this would result in valid consequences of these clauses. Such
inferences are not needed for refutational completeness and their absence improves the efficiency of
the method in practical applications.

4.1 Correctness of the transformation rules

We show that the transformation rules given in Section 3.1 preserve satisfiability.

Lemma 4.1
Let ϕ∈WFFCL be a formula and let M= (�ϕ,S,s0,d,δ,�,π) be a CGM such that M |=ϕ. Let
p∈� be an atomic proposition not occurring in ϕ, and let M′ = (�ϕ,S,s0,d,δ,�,π ′) be a CGM
identical to M except for the truth value assigned by π ′ to p in each state. Then M′ |=ϕ.

In the following ϕ1,ϕ2 ∈WFFCL, D is a disjunction, t is a literal, and t0,t1 are new propositional
symbols.

Lemma 4.2
A formula ϕ∈WFFCL is satisfiable if, and only if, the coalition problem C = ({t0},{t0 ⇒ϕ},{}) is
satisfiable, where t0 does not occur in ϕ.

Proof of Lemma 4.2. (⇒) Let M= (�ϕ,S,s0,d,δ,�,π) be a CGM such that M |=ϕ. Construct a
model M′ = (�C,S,s0,d,δ,�,π ′), such that π ′(s0)=π (s0)∪{t0}, π ′(s)=π (s)\{t0} for all s∈S,s �=
s0, and �C =�ϕ . The satisfiability of C follows from Lemma 4.1, semantics of implication, and the
definition of satisfiability of a coalition problem.

(⇐) Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. By the definition of satisfiability
for a coalition problem and semantics of implication, we have that M |=ϕ. �
Lemma 4.3 (τ∧)
Let C = (I,U ∪{t ⇒ϕ1 ∧ϕ2},N) be a coalition problem. C is satisfiable if, and only if, (I,U ∪{t ⇒
ϕ1,t ⇒ϕ2},N) is satisfiable.

Proof of Lemma 4.3. Immediate from the definition of satisfiability of a coalition problem and
semantics of conjunction. �
Lemma 4.4 (τ∨)
Let C = (I,U ∪{t ⇒ϕ1 ∨ϕ2},N) be a coalition problem. C is satisfiable if, and only if, (I,U ∪{t ⇒
ϕ1 ∨t1,t1 ⇒ϕ2},N) is satisfiable, where t1 does not occur in C.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 893 883–917

A resolution-based calculus for Coalition Logic 893

Proof of Lemma 4.4. Immediate from Lemma 4.1, the definition of satisfiability of a coalition
problem, and semantics of disjunction. �
Lemma 4.5 (τ⇒)
LetC = (I,U ∪{t ⇒D},N) be a coalition problem, where t is a literal. (I,U ∪{t ⇒D},N) is satisfiable
if, and only if,

(1) (I,U ∪{¬t∨D},N) is satisfiable, if D is either a constant or a disjunction of literals;
(2) (I,U,N ∪{t ⇒D}) is satisfiable, if D is either of the form [A]ϕ1 or 〈A〉ϕ1.

Proof of Lemma 4.5. Immediate from the definition of satisfiability of a coalition problem and
semantics of implication. �
Lemma 4.6 (τ[A])
Let C = (I,U,N ∪{t ⇒[A]ϕ1}) be a coalition problem. C is satisfiable if, and only if, (I,U ∪{t1 ⇒
ϕ1},N ∪{t ⇒[A]t1}) is satisfiable, where t1 does not occur in C.

Proof of Lemma 4.6. (⇒) Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. By the
definition of satisfiability for coalition problems, 〈M,s〉 |= t ⇒[A]ϕ1, for all s∈S. By Lemma 4.1,
we can construct a model M′ = (�C,S,s0,d,δ,�,π ′), such that π ′(s)=π (s)∪{t1} if 〈M,s〉 |=ϕ1;
otherwise,π ′(s)=π (s)\{t1}. It follows immediately that for all s∈S, 〈M′,s〉 |= t1 ⇒ϕ1. If 〈M′,s〉 �|=
t, then 〈M′,s〉 |= t ⇒[A]t1. If 〈M,s〉 |= t, then 〈M,s〉 |=[A]ϕ1, as formulae in the set of coalition
clauses are satisfied at all states. Therefore, there is a A-move σA such that 〈M,s′〉 |=ϕ1 for all
s′ ∈out(s,σA). The sets of outcomes of s in M and in M′ are exactly the same, as those models share
the same number of moves (given by d) and the same transition function (given by δ). Thus, for the
same A-move σA, for all s′ ∈out(s,σA), we have 〈M′,s′〉 |=ϕ1 and, by construction, 〈M′,s′〉 |= t1.
By the semantics of the implication and of the coalition modality, we have that 〈M′,s〉 |= t ⇒[A]t1.
By the definition of satisfiability for coalition problems, M′ |= (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒[A]t1}).
(⇐) Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |= (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒[A]t1}). By
the definition of satisfiability for coalition problems, 〈M,s〉 |= t ⇒[A]t1, for all s∈S. If 〈M,s〉 �|= t,
then 〈M,s〉 |= t ⇒[A]ϕ1. If 〈M,s〉 |= t, by the semantics of implication, 〈M,s〉 |=[A]t1 and, by the
semantics of coalition modalities there is a A-move σA such that 〈M,s′〉 |= t1 for all s′ ∈out(s,σA).
As t1 ⇒ϕ1 is satisfiable at all states of the model (by the definition of satisfiability of a coalition
problem), for the same A-move σA, for all s′ ∈out(s,σA), we have 〈M,s′〉 |=ϕ1. By the semantics
of coalition modalities, 〈M,s〉 |=[A]ϕ1. Thus, 〈M,s〉 |= t ⇒[A]ϕ1. By the definition of satisfiability
for coalition problems, M |=C. �
Lemma 4.7 (τ〈A〉,A�=�ϕ)
Let C = (I,U,N ∪{t ⇒〈A〉ϕ1}) be a coalition problem. C is satisfiable if, and only if, (I,U ∪{t1 ⇒
ϕ1},N ∪{t ⇒〈A〉t1}) is satisfiable, where t1 does not occur in C.

Proof of Lemma 4.7. (⇒) Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. By the
definition of satisfiability for coalition problems, 〈M,s〉 |= t ⇒〈A〉ϕ1, for all s∈S. By Lemma 4.1,
we can construct a model M′ = (�C,S,s0,d,δ,�,π ′), such that π ′(s)=π (s)∪{t1} if 〈M,s〉 |=ϕ1;
otherwise, π ′(s)=π (s)\{t1}. It follows immediately that for all s∈S, 〈M′,s〉 |= t1 ⇒ϕ1. If 〈M,s〉 �|=
t, then t ⇒〈A〉t1 is trivially satisfied at 〈M′,s〉. If 〈M,s〉 |= t, because 〈M,s〉 |= t ⇒〈A〉ϕ1, we
have that 〈M,s〉 |=〈A〉ϕ1. By the semantics of a coalition modality, for all A-moves σA there is
s′ ∈out(s,σA) such that 〈M,s′〉 |=ϕ1. The sets of outcomes of s in M and in M′ are exactly the
same, as those models share the same number of moves (given by d) and the same transition function

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 894 883–917

894 A resolution-based calculus for Coalition Logic

(given by δ). Therefore, for all A-moves σA, there is a s′ ∈out(s,σA) such that 〈M′,s′〉 |=ϕ1 and,
by construction, 〈M′,s′〉 |= t1. By the semantics of the coalition modality, we have that 〈M′,s〉 |=
t ⇒〈A〉t1. By the definition of satisfiability for coalition problems, M′ |= (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒
〈A〉t1}).
(⇐) Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |= (I,U ∪{t1 ⇒ϕ1},N ∪{t ⇒〈A〉t1}). By
the definition of satisfiability for coalition problems, 〈M,s〉 |= t ⇒〈A〉t1, for all s∈S. If 〈M,s〉 �|= t,
then 〈M,s〉 |= t ⇒〈A〉ϕ1. Now, if 〈M,s〉 |= t, by the semantics of implication and coalition modalities,
then for all A-movesσA there is s′ ∈out(s,σA) such that 〈M,s′〉 |= t1. By the definition of satisfiability
for coalition problems, 〈M,s〉 |= t1 ⇒ϕ1, for all s∈S, thus for all A-moves σA, there is s′ ∈out(s,σA)
such that 〈M,s′〉 |=ϕ1. By the semantics of coalition modalities, 〈M,s〉 |=〈A〉ϕ1. Therefore,
〈M,s〉 |= t ⇒〈A〉ϕ1. By the definition of satisfiability for coalition problems, M |=C. �
Lemma 4.8 (τ〈�ϕ〉)
Let C = (I,U,N ∪{t ⇒〈�ϕ〉ϕ1}) be a coalition problem. C is satisfiable if, and only if, (I,U,N ∪{t ⇒
[∅]ϕ1}) is satisfiable.

Proof of Lemma 4.8. The proof follows from the axiomatization of CL, as [∅]ϕ1 ⇔〈�ϕ〉ϕ1 is
valid. �
Theorem 4.9
Let ϕ∈WFFCL. Let C0,C1,... be a sequence of coalition problems such that C0 = ({t0},{t0 ⇒
τ0(ϕ)},{}) and Ci+1 is obtained from Ci by applying a transformation rule combined with zero
or more applications of the simplification rules to a formula in Ci. Then the sequence C0,C1,...

terminates, i.e. there exists an index n, n≥0, such that no transformation rule can be applied to Cn.
Furthermore, Cn is a coalition problem in DSNFCL and Cn is satisfiable if, and only if, ϕ is satisfiable.

Proof of Theorem 4.9. Termination can be shown by defining a weight function w that maps each
coalition problem to a pair of natural numbers and proving that each application of a transformation
rule to a coalition problem Ci results in a coalition problem Ci+1 such that w(Ci)>w(Ci+1), where>
is the lexicographic combination of the> ordering on natural numbers with itself. To prove that Cn is
a coalition problem in DSNFCL we show that to any coalition problem Ci that is not in DSNFCL we
can apply one of the transformation rules. Finally, that Cn is satisfiable if, and only if, ϕ is satisfiable
follows from Lemmas 4.1 to 4.8, which show that each individual application of a transformation
rule preserves satisfiability. �

4.2 Soundness

We now show that each of the inference rules given in Section 3.2 is sound. In the following, C,C′ are
conjunctions of literals; D,D′ are disjunctions of literals; l,li are literals; and A,B⊆� are coalitions
(where � is the set of all agents).

Lemma 4.10 (Resolution)
Let M= (�ϕ,S,s0,d,δ,�,π) be a CGM, such that 〈M,s〉 |=D∨l and 〈M,s〉 |=D′∨¬l, for some
s∈S. Then 〈M,s〉 |=D∨D′.

Lemma 4.11 (IRES1)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that D∨l∈I and D′∨¬l∈I∪U . If C is
satisfiable, then (I∪{D∨D′},U,N) is satisfiable.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 895 883–917

A resolution-based calculus for Coalition Logic 895

Lemma 4.12 (GRES1)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that D∨l∈U and D′∨¬l∈U . If C is
satisfiable, then (I,U ∪{D∨D′},N) is satisfiable.

The proofs of Lemmas 4.10, 4.11, and 4.12 follow from soundness of the resolution method for
propositional logic [19].

Lemma 4.13 (CRES1)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that C ⇒[A](D∨l)∈N and C′ ⇒[B](D′∨
¬l)∈N , where A∩B=∅. If C is satisfiable, then (I,U,N ∪{C∧C′ ⇒[A∪B](D∨D′)}) is satisfiable.

Proof of Lemma 4.13. Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. By the
definition of satisfiability of coalition problems, all formulae in N are satisfied at all states. For
s∈S, we have that 〈M,s〉 |=C ⇒[A](D∨l) and 〈M,s〉 |=C′ ⇒[B](D′∨¬l). If 〈M,s〉 �|=C∧C′,
then the implication C∧C′ ⇒[A∪B](D∨D′) is satisfied at s. Assume that 〈M,s〉 |=C∧C′. By the
semantics of conjunction and implication, we have that 〈M,s〉 |=C∧C′ ⇒[A](D∨l)∧[B](D′∨¬l).
By axiom S, we have that [A](D∨l)∧[B](D′∨¬l) implies [A∪B]((D∨l)∧(D′∨¬l)). Therefore,
〈M,s〉 |=[A∪B]((D∨l)∧(D′∨¬l)). By the definition of satisfiability for coalition modalities, there
is a A∪B-move σA∪B such that for all s′ ∈out(s,σA)∩out(s,σB) we have that 〈M,s′〉 |= (D∨l)
and 〈M,s′〉 |= (D′∨¬l). By Lemma 4.10 applied at s′, we have that 〈M,s′〉 |=D∨D′. Again, by the
definition of satisfiability of the coalition modality, we have that 〈M,s〉 |=[A∪B](D∨D′). By the
definition of satisfiability of sets, N ∪{C∧C′ ⇒[A∪B](D∨D′)} is satisfiable. By the definition of
satisfiability of coalition problems, (I,U,N ∪{C∧C′ ⇒[A∪B](D∨D′)}) is satisfiable. �
Lemma 4.14
Let C = (I,U,N) be a coalition problem and M be a model such that M |=C. If ϕ is a formula in U ,
then M |= (I,U,N ∪{true⇒[∅]ϕ}).
Proof of Lemma 4.14. Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. As ϕ∈U , then
by the definition of satisfiability for a coalition problem, for all s∈S, 〈M,s〉 |=ϕ. Therefore, for all
σ moves in D(s), for all states s∈S, we have if s′ ∈out(s,σ), then 〈M,s′〉 |=ϕ. By the semantics of
a coalition modality, we have that 〈M,s〉 |=[∅]ϕ. By the semantics of implication,〈M,s〉 |= true⇒
[∅]ϕ. By the definition of satisfiability of a coalition problem, M |= (I,U,N ∪{true⇒[∅]ϕ}). �
Lemma 4.15 (CRES2)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that (D∨l)∈U and C ⇒[A](D′∨¬l)∈N .
If C is satisfiable, then (I,U,N ∪{C ⇒[A](D∨D′)}) is satisfiable.

Proof of Lemma 4.15. Let M= (�C,S,s0,d,δ,�,π) be a CGM such that M |=C. As (D∨l)∈U ,
by Lemma 4.14, true⇒[∅](D∨l) is satisfied at all states. From this and from Lemma 4.13, we have
that (I,U,N ∪{C∧⇒[A](D∨D′)}) is satisfiable. �
Lemma 4.16 (CRES3)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that C ⇒[A](D∨l)∈N and C′ ⇒〈B〉(D′∨
¬l)∈N , where A⊆B. If C is satisfiable, then (I,U,N ∪{C∧C′ ⇒〈B\A〉(D∨D′)}) is satisfiable.

Proof of Lemma 4.16. From the axiomatization of CL, we have that (1) [A](D∨l)∧〈B〉(D′∨
¬l)⇒〈B\A〉((D∨l)∧(D′∨¬l)), withA⊆B, is valid. LetM= (�C,S,s0,d,δ,�,π) be a CGM such
that M |=C. By the semantics of a coalition problem, for all s∈S we have that 〈M,s〉 |=C ⇒[A](D∨
l) and 〈M,s〉 |=C′ ⇒〈B〉(D′∨¬l). By the semantics of conjunction, semantics of implication, and
from (1), we have that 〈M,s〉 |=C∧C′ ⇒〈B\A〉((D∨l)∧(D′∨¬l)). Assume 〈M,s〉 |=C∧C′ (the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 896 883–917

896 A resolution-based calculus for Coalition Logic

other case is trivial). Thus, by the semantics of implication 〈M,s〉 |=〈B\A〉((D∨l)∧(D′∨¬l)).
From the semantics of the coalition modality, we have that for all B\A-moves σB\A there is s′ ∈
out(s,σB\A) such that 〈M,s′〉 |= ((D∨l)∧(D′∨¬l)). By applying Lemma 4.10 to s′, we have that
〈M,s′〉 |= (D∨D′). From the semantics of the coalition modality 〈M,s〉 |=〈B\A〉(D∨D′). By the
semantics of implication, 〈M,s〉 |=C∧C′ ⇒〈B\A〉(D∨D′). By the definition of satisfiability of
sets, M |=N ∪{C∧C′ ⇒〈B\A〉(D∨D′)}. From the definition of satisfiability of coalition problems,
M |= (I,U,N ∪{C∧C′ ⇒〈B\A〉(D∨D′)}). �
Lemma 4.17 (CRES4)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that (D∨l)∈U and C ⇒〈A〉(D′∨¬l)∈N .
If C is satisfiable, then (I,U,N ∪{C ⇒〈A〉(D∨D′)}) is satisfiable.

Proof of Lemma 4.17. From Lemma 4.14, (D∨l)∈U implies that true⇒[∅](D∨l) is satisfied at
every state of a model. Therefore, the satisfiability of (I,U,N ∪{C ⇒〈A〉(D∨D′)}) follows from
the application of Lemma 4.16 to the coalition problem (I,U,N ∪{true⇒[∅](D∨l),C ⇒〈A〉(D′∨
¬l)}). �
Lemma 4.18 (RW1)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that C ⇒[A]false∈N . If C is satisfiable,
then (I,U ∪{¬C},N) is satisfiable.

Proof of Lemma 4.18. From the axiomatization of CL, the schema [A]false is unsatisfiable.
Therefore, [A]false implies false. By classical reasoning, if a state satisfies C ⇒[A]false, then the
state also satisfies C ⇒ false and therefore ¬C. �
Lemma 4.19 (RW2)
Let C = (I,U,N) be a coalition problem in DSNFCL, such that C ⇒〈A〉false∈N . If C is satisfiable,
then (I,U ∪{¬C},N) is satisfiable.

Proof of Lemma 4.19. From the axiomatization of CL, the schema 〈A〉false is unsatisfiable.
Therefore, if a state in a model satisfies C ⇒〈A〉false, it also satisfies ¬C. �

The following theorem shows that the application of inference rules in RESCL is sound.

Theorem 4.20 (Soundness of RESCL)
Let C be a coalition problem in DSNFCL. Let C′ be the coalition problem in DSNFCL obtained from C
by applying any of the inference rules IRES1, GRES1, CRES1-4 and RW1-2 to C. If C is satisfiable,
then C′ is satisfiable.

Proof of Theorem 4.20. The proof that the calculus preserves satisfiability follows from the fact
that each inference rule preserves satisfiability, as given by Lemmas 4.11 to 4.19. �

4.3 Termination

The proof that every derivation, as given by Definition 3.5, terminates is trivial and based on the
fact that we have a finite number of clauses that can be expressed. As the number of propositional
symbols after translation into the normal form is finite and the inference rules do not introduce new
propositional symbols, we have that the number of possible literals occurring in clauses is finite and
the number of conjunctions (resp. disjunctions) on the left-hand side (resp. right-hand side) of clauses
is finite (modulo simplification). As the number of agents is finite, the number of coalition modalities

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 897 883–917

A resolution-based calculus for Coalition Logic 897

that can be introduced by inference rules is also finite. Thus, only a finite number of clauses can
be expressed (modulo simplification), so at some point either we derive a contradiction or no new
clauses can be generated.

Theorem 4.21
Let C = (I,U,N) be a coalition problem in DSNFCL. Then any derivation from C by RESCL
terminates.

4.4 Completeness

The completeness proof for RESCL is based on the tableau construction given in [9]. Given an
unsatisfiable coalition problem in DSNFCL C, a closed tableau is obtained by this construction. In
this case, we show that there is a refutation by the resolution method presented here, that is, we show
that the method is refutational complete. In particular, we show that the application of the resolution
inference rules to (sub)sets of clauses in a coalition problem in DSNFCL correspond to (some)
applications of the state deletion procedure in the tableau. We note that, as in [9], this corresponds
to weak completeness, that is, if a coalition problem in DSNFCL is satisfiable, then a model can be
obtained from the tableau.

In the following, we present the tableau procedure. The presentation will differ slightly from [9],
as we adapt the method to the particular normal form presented in this article. The only modification
introduced in the method is that we start the construction of a tableau from a set of formulae, instead
of starting from a singleton set. This leads to a different (but equivalent) definition for a successful
tableau, i.e. instead of checking if the input formula is part of some state of the resulting tableau, we
check if the input set of formulae is a subset of some state. We then show how we use this procedure
in order to obtain a tableau corresponding to a coalition problem in DSNFCL. Additionally, as well
as the set of clauses to be shown (un)satisfiable, the set of formulae, which is the input for the tableau
procedure and represents the coalition problem, also contains a set of tautologies, which introduces
as many literals as we need in the states of the resulting tableau. This helps to identify which sets
of clauses and inference rules used in a derivation by the resolution method correspond to a state
deleted from the tableau. This might affect the efficiency of the tableau method, but does not imply
any changes in the correctness proof of the method presented in [9].

Graph construction: the procedure consists of three different phases: construction, prestate
elimination, and state elimination. During the construction phase, a set of rules is used to build
a directed graph called pretableau, which contains states and prestates. States are downward
saturated sets of formulae, that is, sets of formulae to which all conjunctive (α) and disjunctive (β)
rules given in Table 1(a) and (b) have been exhaustively applied. The first column in Table 1(a)
(resp. (1b)) shows the premises, that is the α (resp. β) formulae to which an inference rule is
applied; and the second column shows the n conclusions that are derived from the premises. The
application of those inference rules are formalised below (Def. 4.23) after we precisely define the
language to which those rules are applied. We note that the application of the inference rules to
conjunctive formulae requires that all conclusions are added to the set of formulae whereas the
application of the inference rules to disjunctive formulae requires only one conclusion to be added
to the set of formulae. We also note that we have extended the α and β rules to deal with n-ary
conjunctions and n-ary disjunctions, respectively. The rules given here can be simulated by several
applications of the rules given in [9]. Also note that in a coalition problem in DSNFCL, there is
no formulae of the form 〈�〉ϕ (as the application of the transformation rule τ�φ rewrites such

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 898 883–917

898 A resolution-based calculus for Coalition Logic

Table 1. Tableau rules

α α1,...,αn
¬¬ϕ ϕ

ϕ1 ∧ ...∧ϕn ϕ1,...,ϕn
¬(ϕ1 ∨ ...∨ϕn) ¬ϕ1,...,¬ϕn

〈〈∅〉〉 ϕ ϕ,[∅]〈〈∅〉〉 ϕ

(a) α rules.

β β1 | ... | βn
ϕ1 ∨ ...∨ϕn ϕ1 | ... | ϕn

ϕ1 ∧ ...∧ϕn ⇒ψ ¬ϕ1 | ... | ¬ϕn | ψ
(b) β-rules

formulae) and the corresponding α rule has been suppressed. Prestates are also sets of formulae,
but they do not need to be downward saturated; they are used as auxiliary constructs that will
be further unwound into states. In the prestate elimination phase, prestates are removed, leaving
only states in the graph; also, the edges are rearranged producing a directed graph called an
initial tableau. The last phase removes from the tableau those states which contain inconsistencies
(i.e. the constant false, ¬true, or a formula and its negation) or do not have all the required
successors.

We note that in order to fully capture the semantic nature of a coalition problem in DSNFCL
(I,U,N), the clauses in U and N must be included in every state of the resulting tableau. Instead
of extending the tableau procedure for the next-time fragment of ATL, by explicitly adding those
clauses to states, we make use of the existing α rule for the 〈〈∅〉〉 operator given in the tableau
procedure for full ATL. We define CL+ to be the language of CL plus the 〈〈∅〉〉 operator that is
only allowed to occur positively in CL+ formulae. The semantics of the 〈〈∅〉〉 is defined in terms
of a run:

Definition 4.22
Let F = (�,S,s0,d,δ) be a CGF. A run in F is an infinite sequence λ=s′

0,s
′
1,..., s′

i ∈S for all
i≥0, where s′

i+1 is a successor of s′
i. The indexes i, i≥0, in a sequence λ are called positions. Let

λ=s′
0,s

′
1,...,s

′
i,...,s

′
j,... be a run. We denote by λ[i]=s′

i the i-th state in λ and by λ[i,j]=s′
i,...,s

′
j

the finite sequence that starts at s′
i and ends at s′

j. If λ[0]=s, then λ is called a s-run.

Intuitively, 〈〈∅〉〉 ϕ means that, for all runs, ϕ always holds on them. Formally, a strategy F∅ for
∅ (or ∅-strategy) at a state s is given by F∅({s})∈D(∅,s), i.e. F∅({s}) is the ∅−move, F∅({s})=σ∅.
The outcome of F∅ at state s∈S, denoted by out(s,F∅) is the set of all runs λ such that λ[i+1]∈
out(λ[i],F∅(λ[i])), for all i≥0. Briefly, the outcome of F∅ at state s is a set consisting of every
possible s-run. Finally, given a model M, a state s∈M, and a formula ϕ, 〈M,s〉 |=〈〈∅〉〉 ϕ if, and
only if, there exists an ∅-strategy F∅ such that 〈M,λ[i]〉 |=ϕ for all λ∈out(s,F∅) and all positions
i≥0. The definition of positive coalition formula is now extended to a formula of the form [A]ϕ,
where ϕ is a CL+ formula. Negative coalition formulae and coalition formulae are defined as before.
Note that formulae in the form of 〈〈∅〉〉 always occur positively in the set of formulae used in the
construction of the tableau for a coalition problem in DSNFCL. Also, as it is clear from the procedure
given below, the deletion rule for eventualities (formulae that hold at some future time of a run),
which is part of the full tableau procedure, is not applied here and will not contribute to remove nodes
from the tableau.

Before presenting the construction rules, we give two definitions that will be used later.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 899 883–917

A resolution-based calculus for Coalition Logic 899

Definition 4.23
Let � be a set of CL+ formulae. We say that � is downward saturated if � satisfies the following
two properties:

– If α∈�, then {α1,...,αn}⊆�;
– If β∈�, then β1 ∈�, or ..., or βn ∈�.

Definition 4.24
Let � and� be sets of CL+ formulae. We say that� is a minimal downward saturated extension
of � if � satisfies the following three properties:

– �⊆�;
– � is downward saturated;
– there is no downward saturated set �′ such that �⊆�′ ⊂�.

Construction Phase: As mentioned, the construction phase builds a directed graph which contains
states and prestates. States are downward saturated sets of formulae. Prestates are sets of formulae
used to help the construction of the graph, in a similar fashion to the tableau construction for PTL
[21]. There are two construction rules. The first, SR, creates states from prestates by saturation and
the application of fix-point operations, that is, by applications of α and β rules. We note that the set
of α rules also includes a rule for the 〈〈∅〉〉 operator. According to the α decomposition rules in
[9], 〈〈∅〉〉 ϕ should be decomposed into ϕ and 〈〈∅〉〉 �〈〈∅〉〉 ϕ. The ATL formula 〈〈∅〉〉 �〈〈∅〉〉 ϕ

corresponds to the CL+ formula [∅]〈〈∅〉〉 ϕ, which explains the decomposition rule we give for
〈〈∅〉〉 ϕ. The second rule, Next, creates prestates from states in order to ensure that coalition formulae
are satisfied. There are two types of edges: double edges, from prestates to states; and labelled edges
from states to prestates. Intuitively, the last type of edge represents the possible moves for the agents.

The construction starts by creating a prestate, which we call initial prestate, with a set of formulae

 being tested for satisfiability. Then, the two construction rules are applied until no new states or
prestates can be created. SR is the first of those rules.

SR Given a prestate � do:

(1) Create all minimal downward saturated extensions � of � as states;
(2) For each obtained state �, if � does not contain any coalition formulae, add [�
]true to

�;
(3) Let � be a state created in steps (1) and (2). If there is already in the pretableau a state �′

such that �=�′, add a double edge from � to �′; otherwise, add � and a double edge
from � to � (i.e. ��⇒�) to the pretableau.

In the following, we call initial states the states created from the first application of the rule SR
in the construction of the tableau.

The second rule, Next, is applied to states in order to build a set of prestates, which correspond
intuitively to possible successors of such states. In order to define the moves which are available
to agents and coalition of agents in each state, an ordering over the coalition formulae in that state
is defined. This ordering results in a list L(�), where each positive coalition formula precedes all
negative coalition formulae. Intuitively, each index in this ordering refers to a possible move choice
for each agent. The number of moves, at a state �, for each agent mentioned in a formula ϕ∈�, is
then given by the number of coalition formulae occurring in�, i.e. the size of the list L(�). We also

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 900 883–917

900 A resolution-based calculus for Coalition Logic

note that, from the construction of a tableau, the list L(�) is never empty, as the formula [�ϕ]true
is included in the state � if there are no other coalition formulae in �.

Once the moves available to all agents are defined, they are combined into move vectors. A move
vector labels one or more edges from a state to its successors, which are prestates in the tableau. The
decision of which formulae will be included in the successor prestate �′ of a state � by a move σ ,
is based on the votes of the agents. Suppose [A]ϕ∈� and that [A]ϕ is the i-th formula in L(�). If
all a∈A vote for ϕ, i.e. the corresponding action for agent a is i in σ , then ϕ is included in �′. For
〈A〉ϕ∈�, the decision whether ϕ is included in �′ depends on the collective vote of the agents which
are not in A. We first present the Next rule and then show an example of how a collective vote is
calculated. We say a state � is consistent if, and only if, {¬true,false}∩�=∅ and for all formulae
ϕ, {ϕ,¬ϕ} �⊆�. A state is inconsistent if, and only if, it is not consistent.

Next Given a consistent state �, do the following:

(1) Order linearly all positive and negative coalition formulae in � in such a way that the
positive coalition formulae precede the negative coalition formulae. Let L(�) be the
resulting list:

L(�)= ([A0]ϕ0,...,[Am−1]ϕm−1,〈A′
0〉ψ0,...,〈A′

l−1〉ψl−1)

and let r�=|L(�)|=m+l. Denote by D(�)={0,...,r�}|�
|, the set of move vectors
available at state�. For everyσ ∈D(�), let N(σ)={i | σi ≥m} be the set of agents voting for
a negative formula in the particular move vector σ . Finally, let neg(σ)= (�i∈N(σ)(σi −m))
mod l.

(2) For each σ ∈D(�):
(a) create a prestate

�σ ={ϕi | [Ai]ϕi ∈� and σa = i,∀a∈Ai}
∪{ψj | 〈A′

j〉ψj ∈�,neg(σ)= j and �
\A′
j ⊆N(σ)}

If �σ =∅, let �σ be {true}.
(b) if �σ is not already a prestate in the pretableau, add �σ to the pretableau and connect

� and �σ by an edge labelled by σ ; otherwise, just add an edge labelled by σ from�

to the existing prestate �σ (i.e. add �
σ−→�).

Let prestates(�)={� |� σ−→� for some σ ∈D(�)}. Let L(�) be the resulting list of ordered
coalition formulae in � and ϕ∈L(�). We denote by n(ϕ,L(�)) the position of a coalition formula
ϕ in L(�); if L(�) is clear from the context, we write n(ϕ) for short.

It is easy to see that the Next rule is sound with respect to the axiomatization given in Section 2.2.
A prestate �σ contains both positive coalition formulae [A]ϕA and [B]ϕB only if A∩B=∅, because
there can be no i∈�
 such that σi =n([A]ϕA) and σi =n([B]ϕB) for [A]ϕA �= [B]ϕB.Also, a prestate
�σ contains both coalition formulae [A]ϕA and 〈B〉ϕB only if A⊆B. If A �⊆B, then there is A′ ⊆A
such that A′ ⊆�
\B⊆N(σ). However, all agents in A vote for positive formulae; therefore they
cannot be a subset of N(σ), which is the set of agents voting for negative formulae.

Let � be a state and 〈A〉ϕ∈� be a negative coalition formula. As mentioned above, the decision
whether ϕ is included in a prestate � created from � depends on the collective votes of the agents.
Note that ϕ might be included in � even if the agents a∈�
\A do not vote for 〈A〉ϕ. For instance,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 901 883–917

A resolution-based calculus for Coalition Logic 901

let �
={1,2,3,4} be the set of agents occurring in the set of formulae
, � be a state, L(�)=
([1]p1,〈2〉p2,〈3〉p3,〈4〉p4) be the list of coalition formulae in �, and consider the move vector
(2,0,2,2). Agents in {1,3,4} all vote for the negative formula 〈3〉p3, whose index is 2. The collective
vote is given by ((2−1)+(2−1)+(2−1)) mod 3=0, that is, the agents collectively vote for the
first negative coalition formula, 〈2〉p2. As �
\{2}⊆{1,3,4}, then p2 is included in the successor
prestate.

Prestate elimination phase: in this phase, the prestates (and edges from and to it) are removed from
the pretableau. Let P
 be the pretableau obtained by applying the construction procedure to the
initial prestate containing the set
. Let states(�)={� | ��⇒�}, for any prestate �. The deletion
rule is given below.

PR For every prestate � in P
:

(1) remove � from P
;
(2) for all states � in P
 such that �

σ−→� and all states �′ ∈states(�) put �
σ−→�′.

The graph obtained from exhaustive application of PR to P
 is the initial tableau, denoted by T

0 .

State elimination phase: in this phase, states that cannot be satisfied in any model are removed from
the tableau. There are essentially two reasons to remove a state �: � is inconsistent (as defined

earlier in the text); or for some move σ ∈D(�), there is no state �′ such �
σ−→�′ is in the tableau.

The deletion rules are applied non-deterministically, removing one state at every stage. We denote
by T

m+1 the tableau obtained from T

m by an application of one of the state elimination rules given

below. Let S
m be the set of states of the tableau T

m .

The elimination rules are defined as follows.

–E1 If � is not consistent, obtain T

m+1 from T

m by eliminating �, i.e. let S
m+1 =S
m \{�};
–E2 If for some σ ∈D(�), there is no �′ such that �

σ−→�′, then obtain T

m+1 from T

m by

eliminating �, i.e. let S
m+1 =S
m \{�};
The elimination procedure consists of applying E1 until all inconsistent states are removed. Then,

the rule E2 is applied until no states can be removed from the tableau. The resulting tableau, called
final tableau, is denoted by T
.

Definition 4.25
The final tableau T
 is open if
⊆� for some �∈S
. A tableau T

m , m≥0, is closed if
 �⊆�,
for every �∈S
.

Theorem 4.26
Let
 be a finite set of formulae in CL+. The tableau construction for
 terminates in time exponential
in the size of
 and
 is unsatisfiable if, and only if, the final tableau for
, T
, is closed.

Proof of Theorem 4.26. Termination and complexity of the tableau construction follows from the
results in Section 4 in [9]. Soundness and completeness follow from Theorem 5.15 and Theorem
5.39 of [9], respectively. �

Tableaux for coalition problems: recall that a derivation, as given in Definition 3.5, is a finite
sequence C0,C1,C2,...,Cn of coalition problem in DSNFCL such that Ci+1 is obtained from Ci,
0≤ i<n, by an application of a resolution rule to premises in Ci. For each Ci, 0≤ i≤n, we construct

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 902 883–917

902 A resolution-based calculus for Coalition Logic

an initial tableau T Ci
0 , thereby obtaining a sequence T C0

0 ,T C1
0 ,T C2

0 ,...,T Cn
0 . For each Ci, 0≤ i≤n,

we denote by T Ci+ the tableau obtained from the initial tableau T Ci
0 after the deletion rule E1 has been

exhaustively applied. We show that T Cn+ is closed if, and only if, Cn contains a contradiction. The

proof is by induction on the number of nodes of the tableaux in the sequence T C0+ ,T C1+ ,T C2+ ,...,T Cn+ .
Firstly, we define the set of disjunctions that might occur in a coalition problem in DSNFCL

C = (I,U,N). We denote by �C the set of propositional symbols occurring in C, and by �C =
�C ∪{¬p | p∈�C} the set of literals that might occur in C. Let DC be {simp(

∨
l∈M l) | M∈2�C }\

{true,false}, where simp is defined by simp(D∨l∨¬l)= true and simp(D∨true)= true; in any other
case, simp(D)=D, for any disjunction D. Thus, DC contains any (non trivial) disjunction that can
be formed by either propositional symbols or their negations occurring in the coalition problem C.
For instance, if �C ={p1,p2}, then DC ={p1,p2,¬p1,¬p2,(p1 ∨p2),(p1 ∨¬p2),(¬p1 ∨p2),(¬p1 ∨
¬p2)}. Let�C be the set {(D∨¬D) | D∈DC}. In the following, we refer to�C as the set of tautologies.

The construction of a tableau for a coalition problem in DSNFCL starts as follows. Let C0 =
(I0,U0,N 0) be a coalition problem in DSNFCL. Let Ci = (I i,U i,N i) be a coalition problem in
DSNFCL in a derivation from C0. We construct the initial tableau T Ci

0 for Ci from a prestate containing
the following set of formulae:

{D | D ∈ I i}∪
{〈〈∅〉〉 D′ | D′ ∈ U i}∪
{〈〈∅〉〉 D′′ | D′′ ∈ N i}∪
{〈〈∅〉〉 D′′′ | D′′′ ∈�Ci}

The tautologies in �Ci are added in order to make available in the tableau all possible disjunctions
that might occur in the set of clauses, to identify the premises used in applications of the resolution
inference rules, and to deal with subformulae occurring in the scope of a coalition modality. By doing
so, we can ensure that tableaux corresponding to coalition problems in a derivation will not grow
in size. Also, after the deletion rule E1 has been applied, every state in the tableau will contain a
propositional symbol or its negation, that is, a maximally consistent set of literals. Moreover, every
state will contain all disjunctions which are satisfied by that set of literals. Adding the tautologies to
the initial set of formulae might increase the size of the resulting tableau and, therefore, affect the
efficiency of the tableau procedure. However, we are not concerned with efficiency here, but with
making available all information needed to relate the clauses used in a derivation by the resolution
method with the states built in the corresponding tableaux. Obviously, as tautologies are satisfiable
formulae, the resulting tableau will depend only on the satisfiability of the transformation of the
coalition problem.

We note that global and coalition clauses in DSNFCL are in the scope of the universal modality
〈〈∅〉〉 . This is needed in order to capture the semantics of coalition problems. The next lemma shows
that if a clause is in the set of either global clauses, coalition clauses, or in the set of tautologies for
a coalition problem C, then it is in every state of the initial tableau T C

0 for C.

Lemma 4.27
Let C = (I,U,N) be a coalition problem in DSNFCL. Let PC be the pretableau for C, SC the set of
states in PC , and RC the set of prestates in PC . If ϕ∈U ∪N ∪�C , then the following holds:

1. ϕ∈�, for all �∈SC ;
2. 〈〈∅〉〉 ϕ∈�, for all �∈RC .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 903 883–917

A resolution-based calculus for Coalition Logic 903

Proof of Lemma 4.27. The construction of the tableau follows alternate rounds of applications of
the rules SR and Next.

(1) Assume that 〈〈∅〉〉 ϕ is a formula in a prestate � of PC . By an application of SR, the states
generated from any prestate are downward saturated. More specifically, as this is a conjunctive
formula, every state� generated from � contains ϕ and [∅]〈〈∅〉〉 ϕ. Thus, every state created
from � contains ϕ.

(2) Assume that� is a state that contains [∅]〈〈∅〉〉 ϕ. Recall that by applying the Next rule, if �σ
is a successor prestate generated from a state which contains [Ap]ϕp, then ϕp ∈�σ if σa =p for
all a∈A. As this condition holds vacuously for the empty coalition, every prestate generated
from � contains 〈〈∅〉〉 ϕ.

By construction, 〈〈∅〉〉 ϕ, for all ϕ∈U ∪N ∪�C , is one of the formulae of the initial prestate.
Therefore, from (1) and (2), by induction, all clauses ϕ∈U ∪N ∪�C are in every state created during
the construction phase. Also, from (1) and (2), by induction, 〈〈∅〉〉 ϕ is in every prestate in PC . �
Lemma 4.28
Let C = (I,U,N) be a coalition problem in DSNFCL. Let T C

0 be the initial tableau for C and SC
0 the

set of states in T C
0 . If ϕ∈U ∪N ∪�C , then ϕ∈�, for all �∈SC

0 .

Proof of Lemma 4.28. From Lemma 4.27, ifϕ∈U ∪N ∪�C , thenϕ is in all states in the pretableau
PC . After the construction phase, the rule PR only removes prestates. Thus, all the states in the initial
tableau contain ϕ. �

For technical reasons, we introduce some tautologies in the initial prestate during the construction
of a tableau for a coalition problem in DSNFCL. Adding the set of tautologies has the effect that
every state in the tableau contains every possible disjunction that can be built from propositional
symbols (or their negations) which occur in a coalition problem. In particular, disjunctions in the
form of (l∨¬l), where l is a literal, are in every state of the tableau.

Corollary 4.29
Let C = (I,U,N) be a coalition problem in DSNFCL. Let PC be the pretableau for C, SC the set of
states in PC , and RC the set of prestates in PC . If l∈�C , then the following holds:

(1) (l∨¬l)∈�, for all �∈SC ;
(2) 〈〈∅〉〉 (l∨¬l)∈�, for all �∈RC and l∈�C .

Proof of Corollary 4.29. Immediate from Lemma 4.27 and the definitions of DC and �C . �
Corollary 4.30
Let C = (I,U,N) be a coalition problem in DSNFCL. Let T C

0 be the initial tableau for C and SC
0 the

set of states in T C
0 . If l∈�C , then (l∨¬l)∈�, for all �∈SC

0 .

Proof of Corollary 4.30. Immediate from Lemma 4.28 and the definitions of DC and �C . �
As�C contains tautologies of the form 〈〈∅〉〉 (p∨¬p), for every propositional symbol p occurring

in C, every state of the tableau contains p or its negation.

Lemma 4.31
Let C = (I,U,N) be a coalition problem in DSNFCL, T C

0 be the initial tableau for C, and SC
0 the set

of states in T C
0 . If p∈�C , then either p∈� or ¬p∈�, for all �∈SC

0 .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 904 883–917

904 A resolution-based calculus for Coalition Logic

Proof of Lemma 4.31. By definition, p and ¬p are both in �C . By Corollary 4.30, if l∈�, then
(l∨¬l)∈�, for all �∈SC

0 . Because states are downward saturated, either l∈� or ¬l∈�, for all
�∈SC

0 . �
Moreover, after the deletion rule E1 has been applied, every state in the tableau contains a maximal

consistent set of literals.

Lemma 4.32 (Tautologies)
Let T C+ be the tableau for a coalition problem in DSNFCL C = (I,U,N) and SC+ the set of states in
T C+ . Then every state of T C+ contains a maximal consistent set of literals occurring in C.

Proof of Lemma 4.32. By Lemma 4.31, if l∈�C , then either l or ¬l is in�, for all�⊆SC
0 , where

SC
0 is the set of states in T C

0 . States containing both l and ¬l for some literal l∈�C are deleted by
E1. Therefore, for all �∈SC+, � contains a maximal consistent set of literals. �

Adding the tautologies also helps to show that the tableaux in the sequence corresponding to a
derivation do not increase in size. The conclusion of the resolution rules are disjunctions that hold in
the initial states (IRES1), in all states (GRES1, RW1-2), or in a particular set of states (CRES1-4).
The construction of the tableau requires that β rules are applied to those disjunctions. In general,
applications of β rules to disjunctions have the effect of multiplying the number of successor states.
However, applying β rules to the set of tautologies we introduced in the prestates create all possible
states as successors; thus, further applications of β rules to other disjunctions can only have the effect
of creating states which do not satisfy those other disjunctions. In the following, we assume that α
and β rules are applied in a particular order. This is not important, in general, as the resulting sets
of minimal downward saturated formulae is the same independent of which order those rules are
applied. However, the assumption of a particular order in the application of α and β rules simplifies
the proof that the size of the tableau corresponding to steps in the derivation does not increase, that
is, that we have |T C0+ |≥|T C1+ |≥ ...≥|T Cn+ |.

Let � be a prestate and states(�) be the set of states created from � by an application of the rule
SR. We denote by cons(�)⊆states(�) the set of consistent states created from �, that is, cons(�)=
{� |�∈states(�) and � is consistent}.
Lemma 4.33
Let Ci = (I i,U i,N i) be a coalition problem in DSNFCL. Let Ci+1 be the coalition problem in DSNFCL
obtained from Ci by adding a propositional disjunction ϕ to the initial set of clauses, that is, Ci+1 =
(I i ∪{ϕ},U i,N i), where �Ci =�Ci+1 . Let SCi+ and SCi+1+ be the set of states in T Ci+ and T Ci+1+ ,

respectively. Then |T Ci+1+ |≤|T Ci+ | and for all�Ci+1 ∈SCi+1+ there is�Ci ∈SCi+ , such that�Ci ⊆�Ci+1 .

Proof of Lemma 4.33. Construct the pretableau PCi for Ci. Let �Ci
0 be the initial prestate and let

states(�Ci
0)={�Ci

0 ,...,�
Ci
n }, for some n∈N, be the set of states created from �

Ci
0 by an application

of SR. Furthermore, let cons(�Ci
0)⊆states(�Ci

0) be the set of consistent states in states(�Ci
0).

We now construct the pretableau PCi+1 for Ci+1. Let �Ci+1
0 be the initial prestate of PCi+1 . Note

that �Ci+1
0 =�Ci

0 ∪{ϕ}, because I i+1 =I i ∪{ϕ}, U i+1 =U i, N i+1 =N i, and �Ci+1 =�Ci . Start the

construction by first applying all the α and β rules to those formulae in �Ci+1
0 that are also in �Ci

0 .

Because states are downward saturated and ϕ∈�Ci+1
0 , we also add ϕ to the sets created so far. At this

point of the construction, we have generated a set {�Ci+1
0 ,...,�

Ci+1
n }, where every�Ci+1

k =�Ci
k ∪{ϕ},

for all 0≤k ≤n. Note that the number of sets of formulae created so far is exactly the same as the
number of states created from�

Ci
0 , as the same rules were applied in the same order and we only added

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 905 883–917

A resolution-based calculus for Coalition Logic 905

a formula ϕ to those sets. Take �Ci
k in states(�Ci

0). If �Ci
k �∈cons(�Ci

0), then �Ci+1
k is not consistent

either and any attempt to expand �Ci+1
k will result in an inconsistent state that will be later removed

by E1. Assume�Ci
k ∈cons(�Ci

0). As ϕ is a disjunction, by Lemma 4.27,�Ci
k contains (ϕ∨¬ϕ), which

is a formula in�Ci . Because states are downward saturated,�Ci
k contains either ϕ or ¬ϕ. Therefore,

sets�Ci+1
k =�Ci

k ∪{ϕ} containing both ϕ and ¬ϕ will be later eliminated by rule E1. Assume�Ci+1
k ,

for some 0≤k ≤n, contains ϕ, but not ¬ϕ. We apply the β rule to ϕ and try to expand�Ci+1
k . We note

that, in fact, the β rule is applied to all states, not only those which are consistent, but again whatever
way we try to expand an inconsistent state will result in inconsistent states that will be later removed
by E1. Let ϕ be l1 ∨ ...∨lm, for some m∈N. If m=0, then ϕ is the empty disjunction (false) and
no more rules are actually applied. Therefore, no other states are created from �

Ci+1
0 (as a matter of

fact, the resulting tableau is closed, as every initial state contains false and is eliminated by E1). If
m>0, we apply the β rule to ϕ. By Corollary 4.29, every state �Ci+1

k contains l∨¬l, for all literals
in �Ci+1 =�Ci . By construction, every state is downward saturated. Therefore, every state contains

lj or ¬lj, for 1≤ j≤m. Choose any lj, 0≤ j≤m, and try to expand �Ci+1
k . If �Ci+1

k already contains

lj, we do not need to add anything to the state and we have that �Ci+1
k =�Ci

k . If �Ci+1
k does not

contain lj, then it must contain ¬lj; thus, adding lj results in an inconsistent state which will be later

removed by an application of rule E1. Therefore, the application of the β rule to ϕ in a state�Ci+1
k can

only contribute to create new states that contain inconsistencies. That is, cons(�Ci+1
0)⊆cons(�Ci

0).

Moreover, for all �Ci+1
k ∈cons(�Ci+1

0), there is �Ci
k ∈cons(�Ci

0), such that �Ci
k ⊆�Ci+1

k .

Overall, the application of SR to �
Ci+1
0 results in a set states(�Ci+1

0) with |states(�Ci+1
0)|≥

|states(�Ci
0)|. However, for the set cons(�Ci+1

0)⊆states(�Ci+1
0) of all consistent states, we have that

|cons(�Ci+1
0)|≤|cons(�Ci

0)|.
As ϕ is in I i+1, then ϕ is in the initial prestate and in all initial states of the pretableau PCi+1 .

However, as ϕ is a propositional clause, the constructions of PCi+1 and PCi differs only at the
first application of SR. The applications of Next and SR that follow remain the same. Firstly, the
application of the Next rule depends only on clauses that are in the scope of [A] for some coalition
A. Secondly, further applications of SR depend on prestates created by Next, which is not affected
by the inclusion of ϕ in the initial states. Therefore, for the remaining of the construction, we have
that

⋃

�Ci ∈PCi \�Ci
0

states(�Ci)=
⋃

�Ci+1∈PCi+1\�Ci+1
0

states(�Ci+1).

Obviously, the sets of consistent states created from prestates in �Ci ∈PCi \�Ci
0 and �Ci+1 ∈PCi+1 \

�
Ci+1
0 are also the same in T Ci+ and T Ci+1+ . As the deletion rule PR only removes prestates and because

the remainder of the construction of PCi+1 is exactly as in the construction of PCi , after exhaustively
applying E1, the number of states in T Ci+1+ cannot be greater than the number of states in T Ci+ . Thus,

|T Ci+1+ |≤|T Ci+ |. As SCi+ =⋃
�∈PCi cons(�) and SCi+1+ =⋃

�Ci+1∈PCi+1 cons(�Ci+1), we have that for

all �Ci+1 ∈SCi+1+ there is �Ci ∈SCi+ , such that �Ci ⊆�Ci+1 . �
Lemma 4.34
Let Ci = (I i,U i,N i) be a coalition problem in DSNFCL. Let Ci+1 be the coalition problem in
DSNFCL obtained from Ci by adding a propositional disjunction ϕ to the global set of clauses,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 906 883–917

906 A resolution-based calculus for Coalition Logic

that is, Ci+1 = (I i,U i ∪{ϕ},N i), where �Ci =�Ci+1 . Let SCi+ and SCi+1+ be the set of states in T Ci+
and T Ci+1+ , respectively. Then |T Ci+1+ |≤|T Ci+ | and for all �Ci+1 ∈SCi+1+ there is �Ci ∈SCi+ , such that
�Ci ⊆�Ci+1 .

Proof of Lemma 4.34. Construct the pretableau PCi for Ci. Let�Ci
0 be the initial prestate in PCi and

let states(�Ci
0)={�Ci

0 ,...,�
Ci
n }, for some n∈N, be the set of states created from �

Ci
0 by an application

of SR. Furthermore, let cons(�Ci
0)⊆states(�Ci

0) be the set of consistent states in states(�Ci
0).

We now construct the pretableau PCi+1 for Ci+1. Let �Ci+1
0 be the initial prestate of PCi+1 . Note

that�Ci+1
0 =�Ci

0 ∪{〈〈∅〉〉 ϕ}, because I i+1 =I i, U i+1 =U i ∪{ϕ}, N i+1 =N i, and�Ci+1 =�Ci . Start

the construction by first applying all the α and β rules to the formulae in �Ci+1
0 which are also in

�
Ci
0 . Because states are downward saturated and 〈〈∅〉〉 ϕ∈�Ci+1

0 , we also add 〈〈∅〉〉 ϕ, ϕ, and
[∅]〈〈∅〉〉 ϕ to the sets of formulae created so far. At this point of the construction, we have generated
a set {�Ci+1

0 ,...,�
Ci+1
n }, where every�Ci+1

k =�Ci
k ∪{〈〈∅〉〉 ϕ,ϕ,[∅]〈〈∅〉〉 ϕ}, for all 0≤k ≤n. Note

that the number of sets of formulae created so far is exactly the same as the number of states
created from �

Ci
0 , as the same rules were applied in the same order and we only added formulae to

those sets. Take �Ci
k in states(�Ci

0). If �Ci
k �∈cons(�Ci

0), then �Ci+1
k is not consistent either and any

attempt to expand�Ci+1
k will result in an inconsistent state that will be later removed by E1. Assume

�
Ci
k ∈cons(�Ci

0). As ϕ is a disjunction, by Lemma 4.27, �Ci
k already contains either ϕ∨¬ϕ, which

is a formula in �Ci . By construction, every state is downward saturated. Therefore, �Ci
k contains

ϕ or ¬ϕ. Therefore, sets �Ci+1
k =�Ci

k ∪{〈〈∅〉〉 ϕ,ϕ,[∅]〈〈∅〉〉 ϕ} containing both ϕ and ¬ϕ will be

later eliminated by rule E1. Assume �Ci+1
k , for some 0≤k ≤n, contains ϕ, but not ¬ϕ. We apply

the β rule to ϕ and try to expand �Ci+1
k . We note that, in fact, the β rule is applied to all states, but

whatever way we try to expand an inconsistent state will result in inconsistent states that will be later
removed by E1. Let ϕ be l1 ∨ ...∨lm, for some m∈N. If m=0, then ϕ is the empty disjunction and
no more rules are actually applied. Therefore, no other states are created from �

Ci+1
0 (as a matter of

fact, the resulting tableau is closed, as every initial state contains false and is eliminated by E1). If
m>0, we apply the β rule to ϕ. By Corollary 4.29, every state �Ci+1

k contains l∨¬l, for all literals
in �Ci+1 =�Ci . By construction, every state is downward saturated. Therefore, every state contains

lj or ¬lj, for 1≤ j≤m. Choose any lj, 0≤ j≤m, and try to expand �Ci+1
k . If �Ci+1

k contains lj, we

do not need to add lj. If �Ci+1
k does not contain lj, then it must contain ¬lj; thus, adding lj results

in an inconsistent state which will be later removed by an application of rule E1. Therefore, the
application of the β rule to ϕ at the initial prestate can only contribute to create states that contain
inconsistencies. That is, |cons(�Ci+1

0)|≤|cons(�Ci
0)|. Moreover, for all �Ci+1

k ∈cons(�Ci+1
0), there is

�
Ci
k ∈cons(�Ci

0), such that �Ci
k ⊆�Ci+1

k =�Ci
k ∪{〈〈∅〉〉 ϕ,ϕ,[∅]〈〈∅〉〉 ϕ}.

Overall, the application of SR to �
Ci+1
0 results in a set states(�Ci+1

0) with |states(�Ci+1
0)|≥

|states(�Ci
0)|. However, for the set cons(�Ci+1

0)⊆states(�Ci+1
0) of all consistent states, we have that

|cons(�Ci+1
0)|≤|cons(�Ci

0)|.
As N i+1 =N i, the set of prestates created from a state �Ci+1 ∈PCi+1 is like the set of prestates

created from �Ci ∈PCi , except that we add 〈〈∅〉〉 ϕ to the formulae used in the construction of the
set of successor prestates (by an application of the rule Next to [∅]〈〈∅〉〉 ϕ∈�Ci+1). When the rule
SR is applied to such a prestate, as ϕ is in the scope of 〈〈∅〉〉 , ϕ is added to all created states. By
reasoning as above, the addition of ϕ to a state in PCi+1 can only contribute to create states that contain
inconsistencies and that will be later removed by applications of the rule E1. Therefore, in this step

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 907 883–917

A resolution-based calculus for Coalition Logic 907

of the construction we are not adding any consistent states either. Therefore, for the remaining of
the construction, for all�Ci+1

k ∈cons(�Ci+1), with �Ci+1 ∈PCi+1 \�Ci+1
0 , there is�Ci

k ∈cons(�Ci) with

�Ci ∈PCi \�Ci
0 , such that �Ci

k ⊆�Ci+1
k .

By induction on the steps of the construction, all added states are inconsistent. As PR only
removes prestates, after exhaustively applying E1, the number of states in T Ci+1+ cannot be

greater than the number of states in T Ci+ . Thus, |T Ci+1+ |≤|T Ci+ |. As SCi+ =⋃
�∈PCi cons(�) and

SCi+1+ =⋃
�Ci+1∈PCi+1 cons(�Ci+1), we have that for all �Ci+1 ∈SCi+1+ there is �Ci ∈SCi+ , such that

�Ci ⊆�Ci+1 . �
The next lemma shows that the right-hand side of a coalition formula holds where the left-hand side

holds. We need this in order to identify the sets of clauses which contribute to finding a contradiction.

Lemma 4.35
Let C = (I,U,N) be a coalition problem in DSNFCL and C ⇒D be a clause in N , where C =
l1 ∧ ...∧ln, for some n≥0. Let T C be the tableau for C and � a state in T C+ . If {l1,...,ln}⊆�, then
D∈�.

Proof of Lemma 4.35. If C ⇒D is in N , then by Lemma 4.28, C ⇒D is in every state of T C . If
n=0, then C is the empty conjunction (true). Because � is downward saturated, it must contain
either ¬true or D. As states containing ¬true are removed by applications of E1,�must contain D.
If n>0, assume {l0,...,ln}⊆�. As states are downward saturated, by applications of the β rule to
C ⇒D, every state contains either a literal in {¬l1,...,¬ln} or D. If for any lj, 0≤ j≤n, we had that
lj ∈�, then � would be inconsistent and, therefore, � would have been removed from the tableau
T C+ . Therefore, as �∈T C+ , we have that D∈�. �
Note that if D is the right-hand side of any other coalition clause than C ⇒D, then D might also occur
in states where none of the literals in C is satisfied. The lemma above shows that applications of the
rule SR to coalition clauses do not increase the number of states during the construction phase. The
next lemma shows that the size of the tableaux in the sequence corresponding to a derivation does
not increase by adding implications to the set of coalition clauses.

Lemma 4.36
Let Ci = (I i,U i,N i) be a coalition problem in DSNFCL. Let Ci+1 be the coalition problem in DSNFCL
obtained from Ci by adding a coalition clause ϕ⇒ψ to the coalition set of clauses, that is, Ci+1 =
(I i,U i,N i ∪{ϕ⇒ψ}), where �Ci =�Ci+1 and where �Ci =�Ci+1 . Let SCi+ and SCi+1+ be the set of

states in T Ci+ and T Ci+1
0 , respectively. Then |T Ci+1+ |≤|T Ci+ | and for all�Ci+1 ∈SCi+1+ there is�Ci ∈SCi+ ,

such that �Ci ⊆�Ci+1 .

Proof of Lemma 4.36. Construct the pretableau PCi for Ci. Let �Ci
0 be the initial prestate and let

states(�Ci
0)={�Ci

0 ,...,�
Ci
n }, for some n∈N, be the set of states created from �

Ci
0 by an application

of SR. Let cons(�Ci
0)⊆states(�Ci

0) be the set of consistent states in states(�Ci
0).

We now construct the pretableau PCi+1 for Ci+1. Let�Ci+1
0 be the initial prestate of PCi+1 . Note that

�
Ci+1
0 =�Ci

0 ∪{〈〈∅〉〉 (ϕ⇒ψ)}, because I i+1 =I i, U i+1 =U i, N i+1 =N i ∪{ϕ⇒ψ}, and �Ci+1 =
�Ci . Start the construction by first applying all the α and β rules to the formulae in �Ci

0 which

are also in �Ci+1
0 . Because states are downward saturated and 〈〈∅〉〉 (ϕ⇒ψ)∈�Ci+1

0 , we also add
〈〈∅〉〉 (ϕ⇒ψ), ϕ⇒ψ , and [∅]〈〈∅〉〉 (ϕ⇒ψ) to the sets of formulae created so far. At this point of
the construction, we have generated a set {�Ci+1

0 ,...,�
Ci+1
n }, where every�Ci+1

k =�Ci
k ∪{〈〈∅〉〉 (ϕ⇒

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 908 883–917

908 A resolution-based calculus for Coalition Logic

ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ)}, for all 0≤k ≤n. Note that the number of sets of formulae created so
far is exactly the same as the number of states created from �

Ci
0 , as the same rules were applied in the

same order and we only added formulae to those states. Take �Ci
k in states(�Ci

0). If �Ci
k �∈cons(�Ci

0),

then�Ci+1
k is not consistent either and any attempt to expand�Ci+1

k will result in an inconsistent state

that will be later removed by E1. Assume �Ci
k ∈cons(�Ci

0). We now apply the β rule to ϕ⇒ψ in

�
Ci+1
k . Let ϕ be l1 ∧ ...∧lm, for some m∈N. As states are downward saturated, they contain either

one of the literals in {¬l1,...,¬lm} or ψ . By Corollary 4.29, every state�Ci+1
k contains l∨¬l, for all

literals in �Ci+1 =�Ci . By construction, every state is downward saturated. Therefore, every state

contains lj or ¬lj, for 1≤ j≤m. Choose any ¬lj, 0≤ j≤m, and try to expand�Ci+1
k . If�Ci+1

k contains

¬lj, we do not need to add ¬lj. If �Ci+1
k does not contain ¬lj, then it must contain lj; thus, adding

¬lj results in an inconsistent state which will be later removed by an application of rule E1. Also,
by Lemma 4.35, ψ is included in every �Ci

k that contains all the literals in ϕ and no new consistent

states are created. That is, |cons(�Ci+1
0)|≤|cons(�Ci

0)|. Moreover, for all �Ci+1
k ∈cons(�Ci+1

0), there

is �Ci
k ∈cons(�Ci

0), such that �Ci
k ⊆�Ci+1

k =�Ci
k ∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ)}.

The above corresponds to the first application of the rule SR. Again, the application of SR to �Ci+1
0

results in a set states(�Ci+1
0) with |states(�Ci+1

0)|≥|states(�Ci
0)|. However, for the set cons(�Ci+1

0)⊆
states(�Ci+1

0) of all consistent states, we have that |cons(�Ci+1
0)|≤|cons(�Ci

0)|. We now apply the
Next rule to states in PCi+1 and show that further applications of SR will not contribute with new
consistent states in PCi+1 .

Let �Ci+1
k be a consistent state that contains ψ . If ψ ∈�Ci

k (for instance, because it is the right-

hand side of another coalition clause whose left-hand side is also satisfied in�Ci
k), then the prestates

created from �
Ci+1
k are exactly as the prestates created from �

Ci
k , except for the clause related to

ϕ⇒ψ in N i+1, that is, if � is a prestate created from �
Ci
k , then �′ =�∪{〈〈∅〉〉 (ϕ⇒ψ)} is a

prestate created from �
Ci+1
k . Thus, |prestates(�Ci+1

k)|=|prestates(�Ci
k)| and for all � created from

�
Ci
k there is a prestate �′ created from �

Ci+1
k such that �⊆�′. Moreover, as 〈〈∅〉〉 (ϕ⇒ψ) is

an α formula, if � is a state created from a prestate � in prestates(�Ci
k), then �′ created from

the prestate�′ =�∪{〈〈∅〉〉 (ϕ⇒ψ)} is such that�′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒
ψ)}. Reasoning as above, no new consistent states are created from further application of SR to
prestates created from �

Ci+1
k =�Ci

k ∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ)}, if ψ ∈�Ci
k . That

is, for all �′ ∈prestates(�Ci+1
k), such that ψ ∈�Ci

k , we have that |cons(�′)|≤|cons(�)|, where �∈
prestates(�Ci

k).

If ψ �∈�Ci
k , then let m and l be the number of positive and negative coalition formulae in �Ci

k ,

respectively. From �
Ci
k , a set of prestates {�Ci

1 ,...,�
Ci
p }, for some p∈N, is created by an application

of the rule Next. In particular, there is a prestate, say�Ci
1 , which contains only the clauses in {ψ ′ | ϕ′ ⇒

[∅]ψ ′ ∈N i and �Ci
k |=ϕ′}∪{D,〈〈∅〉〉 D | D∈U i ∪N i ∪�Ci}. This particular prestate exists because

in the initial set of formulae we have a clause as, for instance, 〈〈∅〉〉 (l∨¬l), for some literal l∈�Ci ,
which cannot occur in N i since the normal form requires that all disjunctions are kept in their simplest
form. As 〈〈∅〉〉 (l∨¬l) is in the initial set of formulae, by Lemma 4.27, [∅]〈〈∅〉〉 (l∨¬l) is in every
state of the pretableau. Say the position of [∅]〈〈∅〉〉 (l∨¬l) in L(�Ci

k) is 0. Then by applying the rule

Next to �Ci
k , we create a prestate �σ with σa =0 for all a∈�Ci where no other formulae are added,

besides the formulae in the scope of [∅] and formulae of the form 〈〈∅〉〉 D, for D∈U i ∪N i ∪�Ci .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 909 883–917

A resolution-based calculus for Coalition Logic 909

The right-hand side of a coalition clause is a positive or a negative coalition formula. If ψ is of
the form [A]χ (resp. 〈A〉χ), then the number of positive and negative coalition formulae in �Ci+1

k

are m+1 and l (resp. m and l+1), respectively. From �
Ci+1
k , a set of prestates {�Ci+1

1 ,...,�
Ci+1
q },

for some q∈N, is created. Now, note that there must be a prestate, say �Ci+1
1 , which is like �Ci

1 , but

where the formulae related to ϕ⇒ψ in Ci+1 are added, that is, �Ci+1
1 contains only the formulae in

{ψ ′ | ϕ′ ⇒[∅]ψ ′ ∈N i+1 and �Ci
k |=ϕ′}∪{D,〈〈∅〉〉 D | D∈U i ∪N i+1 ∪�Ci}.

If A=∅, as formulae in the scope of [∅] are all in �Ci+1
1 , we add to the pretableau the edges

�
Ci+1
k

σ−→�
Ci+1
1 , for all σ . Note that in this case we also have that prestates created from �

Ci+1
k are

exactly as the prestates created from �
Ci
k , except for the formulae related to ϕ⇒ψ in N i+1, that is,

if � is a prestate created from�
Ci
k , then �′ created from�

Ci+1
k is �′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),χ}. Thus,

|prestates(�Ci+1
k)|=|prestates(�Ci

k)| and for all � created from �
Ci
k there is a prestate �′ created

from �
Ci+1
k such that �⊆�′. Reasoning as in Lemma 4.34, the addition of a formula in the scope of

〈〈∅〉〉 has no effect on the number of states created from �′ compared with the number of states
created from �, as we only apply an α rule to such a formula; also, as we are adding a propositional
disjunction to a prestate, reasoning as above, further application of SR to �′ will not increase the
number of states created from �′ in T Ci+1+ , that is, |cons(�′)|≤|cons(�)| and for all �′ ∈cons(�′),
there is �∈cons(�), such that �′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ),ψ,χ}.

Note that there is no coalition clause of the form ϕ⇒〈A〉χ , where A=�Ci+1 , because the
transformation rule τ�ϕ rewrites such formulae as ϕ⇒[∅]χ and because the applications of CRES3
cannot produce a resolvent where there is a formulae in the scope of 〈�Ci+1〉. So, we do not need to
treat this case here.

If A �=∅ (resp. A �=�Ci+1), then a prestate, say�Ci+1
m+1 (resp.�Ci+1

l+1), containingχ (and possibly other

formulae) might be created. We add the prestate and the edges �Ci+1
k

σ−→�
Ci+1
m+1, where σA =m+1

(resp.�Ci+1
k

σ−→�
Ci+1
l+1 , where�Ci+1 \A⊆N(σ) and neg(σ)= l+1) to the pretableau. Note, however,

that as χ ∈DCi , by Lemma 4.27, every state created from �
Ci+1
1 contains (χ∨¬χ); as states are

downward saturated, every state contains either χ or ¬χ . Therefore, a state containing χ and all other
disjunctions that might be included in �Ci+1

m+1 (resp. �Ci+1
l+1) has already been created by applications of

SR to�Ci+1
1 and it is not added to the pretableau. Instead, we add double edges from�Ci+1

m+1 (resp.�Ci+1
l+1)

to the already existing states. If χ is the empty disjunction some new states are created, but all of them
contain an inconsistency and will be removed later by the rule E1. Again, if � is a prestate created
from�

Ci
k and�′ is a prestate created from�

Ci+1
k we have that |cons(�′)|≤|cons(�)|.Also, for all�′ ∈

cons(�′), there is�∈cons(�), such that either�′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ)}
(it is as before) or�′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ),χ} (it has the formula in the
scope of [A] or 〈A〉 included in the state).

Overall, the inclusion of either positive or negative coalition formulae in a state �Ci+1
k might add

to the number of prestates, but not to the number of consistent states which are the successors of�Ci
k ,

that is, we might have |prestates(�Ci+1
k)|≥|prestates(�Ci

k))|, but

|
⋃

�′∈prestates(�
Ci+1
k)

cons(�′)|≤|
⋃

�∈prestates(�
Ci
k)

cons(�)|.

As prestates are removed from rule PR, they have no effect on the size of the tableau.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 910 883–917

910 A resolution-based calculus for Coalition Logic

By induction on the steps of the construction, all added states are inconsistent. As PR only
removes prestates, after exhaustively applying E1, the number of states in T Ci+1+ cannot be

greater than the number of states in T Ci+ . Thus, |T Ci+1+ |≤|T Ci+ |. As SCi+ =⋃
�∈PCi cons(�) and

SCi+1+ =⋃
�Ci+1∈PCi+1 cons(�Ci+1), we have that for all �Ci+1 ∈SCi+1+ there is �Ci ∈SCi+ , such that

�Ci ⊆�Ci+1 . �
From the lemmas above, if a coalition problem in DSNFCL Ci+1 is obtained from Ci by an

application of any of the resolution rules presented in Section 3.2, the size of the tableau for Ci+1 is
not greater than the size of the tableau for Ci, after the rule E1 has been applied.

Theorem 4.37
Let C0,...,Cn be a derivation and T Ci+ be the tableau for Ci, 0≤ i≤n, after the E1 has been exhaustively

applied. Let SCi+ and SCi+1+ be the set of states in T Ci+ and T Ci+1
0 , respectively. Then |T C0+ |≥ ...≥|T Cn+ |

and for all �Ci+1 ∈SCi+1+ there is �Ci ∈SCi+ , such that �Ci ⊆�Ci+1 .

Proof of Theorem 4.37. By the definition of derivation, Ci+1 is obtained from Ci by either adding
a clause to I i, U i, or N i. By Lemmas 4.33, 4.34 and 4.36, including a clause in any of those sets does
not increase the size of the tableau after the rule E1 has been exhaustively applied. Thus, |T C0+ |≥
...≥|T Cn+ |. By the same lemmas, for all�Ci+1 ∈SCi+1+ there is�Ci ∈SCi+ , such that�Ci ⊆�Ci+1 . �

The next result will be used later in the completeness proof for RESCL.

Theorem 4.38 (Completeness of classical propositional resolution [19])
If S is an unsatisfiable set of propositional clauses, then there is a refutation from S by the resolution
method, where the inference rule RES is given by {(D∨l),(D′∨¬l)}� (D∨D′).

The inference rules IRES1 and GRES1 together correspond to classical resolution as given in
[19]. The next lemma shows that if the propositional part of a coalition problem in DSNFCL is
unsatisfiable, then there is a refutation using only the inference rules IRES1 and GRES1.

Lemma 4.39
Let C = (I,U,N) be a coalition problem in DSNFCL. If I∪U is unsatisfiable, there is a refutation
for I∪U using only the inference rules IRES1 and GRES1.

Proof of Lemma 4.39. If I∪U is unsatisfiable, by Theorem 4.38, there is a refutation from I∪U
by the resolution method. Let C′

0,...,C
′
n, with n∈N, be a sequence of sets of propositional clauses,

where C′
0 =I∪U , false∈C′

n, and, for each 1≤ i≤n, C′
i+1 is the set of clauses obtained by adding to

C′
i the resolvent of an application of the classical resolution rule RES to clauses in C′

i. We inductively
construct a refutation C0,...,Cn for C = (I,U,N) as follows. In the base case, C0 =C. For the induction
step, let C0,...,Ci be the derivation already constructed. In C′

0,...,C
′
i,C′

i+1, we obtained (D∨D′) by
an application of RES to (D∨l) and (D′∨¬l)∈C′

i. As clauses in C′
i are in I i ∪U i, we say that a clause

D originates from I i (resp. U i), if D is in I i (resp. U i).

• If (D∨l)∈C′
i originates from a clause in I i and (D′∨¬l)∈C′

i originates from a clause in I i ∪U i,
then let Ci+1 = (I i ∪{D∨D′},U i,N i), where D∨D′ is obtained by an application of IRES1 to
(D∨l) and (D′∨¬l) in Ci, and we have C′

i+1 =I i+1 ∪U i+1;
• If both (D∨l) and (D′∨¬l) in C′

i originate from clauses in U i, then let Ci+1 = (I i,U i ∪{D∨
D′},N i), where D∨D′ is obtained by an application of GRES1 to (D∨l) and (D′∨¬l) in Ci,
and we have C′

i+1 =I i+1 ∪U i+1.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 911 883–917

A resolution-based calculus for Coalition Logic 911

By construction, false∈C′
n, thus there is a refutation in RESCL using only the inference rules

IRES1 and GRES1. �
Lemma 4.40
Let C = (I,U,N) be a coalition problem in DSNFCL and T C+ be the tableau for C after the E1 has
been exhaustively applied. If T C+ is closed, then I∪U is unsatisfiable. Moreover, there is a refutation
from C that uses only the inference rules IRES1 and GRES1.

Proof of Lemma 4.40. If T C+ is closed, all initial states have been eliminated by E1, that is, all
initial states contain propositional inconsistencies. By Lemma 4.28 if ϕ∈U ∪N ∪�C , then ϕ∈�,
for all �∈T C

0 and, therefore, ϕ is in every initial state. By construction, if ϕ∈I, because ϕ is in
the initial prestate and states are downward saturated, then ϕ is in all initial states. Thus, if all initial
states are inconsistent, by Theorem 4.26, we have that

∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
(¬C∨D′′)∧

∧

D′′′ ∈�C
D′′′

is not satisfiable. As
∧

D′′′ ∈�C D′′′ is valid, we have that

∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
(¬C∨D′′)

is unsatisfiable. By Lemma 4.35, D′′ on the right-hand side of a coalition clause C ⇒D′′ holds where
C holds. Therefore,

(
∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
¬C)∨(

∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
C∧

∧

(C⇒D′′)∈N
D′′)

is not satisfiable. Now, there is no formula in any state which is the negation of a coalition modality
because of the particular normal form we use here. Thus, as

∧
(C⇒D′′)∈N D′′ is not propositional, it

cannot contribute directly to deletion of the initial states (by E1). Therefore,

(
∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
¬C)∨(

∧

D∈I
D∧

∧

D′ ∈U
D′∧

∧

(C⇒D′′)∈N
C)

is unsatisfiable. By distribution, we have that

(
∧

D∈I
D∧

∧

D′ ∈U
D′)∧(

∧

(C⇒D′′)∈N
¬C∨

∧

(C⇒D′′)∈N
C)

is unsatisfiable. As (
∧

(C⇒D′′)∈N ¬C)∨∧
(C⇒D′′)∈N C)) is a tautology, by the semantics of

conjunction, we have that:

∧

D∈I
D∧

∧

D′ ∈U
D′

is unsatisfiable. By Lemma 4.39, there is a refutation from C = (I,U,N) that uses only the inference
rules IRES1 and GRES1. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 912 883–917

912 A resolution-based calculus for Coalition Logic

Next we prove that RESCL is complete. That is, given a unsatisfiable coalition problem in DSNFCL,
there is a refutation for it.

Theorem 4.41 (Completeness of RESCL)
Let C = (I,U,N) be an unsatisfiable coalition problem in DSNFCL. Then there is a refutation for C
using the inference rules IRES1, GRES1, CRES1-4 and RW1-2.

Proof of Theorem 4.41. Let C = (I,U,N) be an unsatisfiable coalition problem in DSNFCL.
Firstly, if C is unsatisfiable and only if C is unsatisfiable, by Theorem 4.26, we have that T C is
closed. Obviously, if C is unsatisfiable, every coalition problem in DSNFCL C0,... in a derivation, is
also unsatisfiable. We show that if C is unsatisfiable, then we can inductively construct a refutation
RC =C0,...,Cm, m∈N. By Theorem 4.37, we have that |T C0+ |≥ ...≥|T Cm+ | and we show that T Cm+ is
closed, that is, that the application of the resolution rules in the derivation RC =C0,...,Cm correspond
to deletions of states in the corresponding tableaux T C0+ ,...,T Cm+ .

For the base case, C contains either false or a propositional symbol and its negation. In the first
case, T C0+ is closed, no states are further deleted, and by Lemma 4.40, RC =C0, is a refutation for C.
In the second case, if {p,¬p}∈I, then Lemma 4.40 also ensures that there is a refutation for C which
uses only the inference rules IRES1 and GRES1.

Assume T C0+ is not closed. Let RC =C0,...,Ci be a derivation and Ci be the coalition problem in
DSNFCL obtained after the inference rules IRES1 and GRES1 have been exhaustively applied. Let
T Ci+ be the tableau for Ci after the deletion rule E1 has been exhaustively applied.

If T Ci+ is closed, by Lemma 4.40, RC =C0,...,Ci, m= i, is a refutation for C which uses only the
inference rules IRES1 and GRES1.

If T Ci+ is not closed, then, by Theorem 4.26, the final tableau T Ci for Ci must be closed, as

the tableau procedure is complete. Therefore, there must be a state in T Ci+ that can be deleted
by an application of the deletion rule E2. Let � be the first state to which E2 is applied. By
the definition of E2, � is deleted if there is a move vector σ ∈D(�) such that there is no
�′ with �

σ−→�′. Let L(�) be the ordered list of coalition formulae in � and let n(ϕ) be
the the position of ϕ in L(�). From Lemma 4.28, global clauses and tautologies are in every
state. By Lemma 4.35, the right-hand side of coalition formulae are in the states where the left-
hand side is satisfied. Therefore, by Lemmas 4.28 and 4.35, and by the definition of the rule
Next in the tableau construction, which gives the set of prestates that are connected from �

by an edge labelled by σ , we obtain that �′ is one of the minimal downward saturated sets
built from U i ∪�Ci ∪{D′ | C′ ⇒[A]D′ ∈N i,� |=C′ and σa =n([A]D′), for all a∈A}∪{D′′ | C′′ ⇒
〈A〉D′′ ∈N i,� |=C′′,�Ci \A⊆N(σ) and neg(σ)=n(〈A〉D′′)}. If�′ is not in T Ci+ , it must have been
deleted by an application of E1, because � is the first state being deleted by E2. Therefore, by the
definition of E1, �′ contains propositional inconsistencies. Thus, as tautologies are valid formulae,

∧

D∈U i

D∧
∧

C′ ⇒[A]D′ ∈N i
� |=C′

σa =n([A]D′), for all a∈A

D′∧
∧

C′′ ⇒〈A〉D′′ ∈N i
� |=C′′

�Ci
\A⊆N(σ)

neg(σ)=n(〈A〉D′′)

D′′

is unsatisfiable. As this corresponds to a propositional set of clauses, by Theorem 4.38 there must
be a refutation by the resolution method for this set. Let C′

0,...,C
′
n, with n∈N, be a sequence of

sets of propositional clauses, where C′
n contains the constant false, C′

0 is given by the set of clauses
above and, for each 1≤ j≤n, C′

j+1 is the set of clauses obtained by adding to C′
j the resolvent of

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 913 883–917

A resolution-based calculus for Coalition Logic 913

an application of the classical resolution rule RES to clauses with complementary literals in C′
j. We

inductively construct a derivation Ci,...,Cm′ , with m′ ∈N, such that Cm′ contains either a clause of the
form C ⇒[A]false or C ⇒〈A〉false, where C is a conjunction and A is a coalition. In the base case,
C0 =C. For the induction step, let Ci,...,Cj be the derivation already constructed. In C′

0,...,C
′
j,C′

j+1,

we obtained (D∨D′) by an application of RES to (D∨l) and (D′∨¬l)∈C′
j. As clauses in C′

j are in
either U i or are the right-hand side of a coalition clause in N i, for 1≤ j≤n and 1≤ i≤m′, we say
that a clause D originates from U i (resp. N i), if D is in U i (resp. C ⇒D is in N i). The possible
derivations in RESCL are as follows:

1. If D∨l originates from a clause C′ ⇒[A](D∨l)∈N i+j and D′∨¬l originates from a clause
C′′ ⇒[B](D′∨¬l)∈N i+j, by soundness of the tableau procedure we have that A∩B=∅; let
Ci+j+1 =Ci+j ∪{C′∧C′′ ⇒[A∪B](D∨D′)}, where C′∧C′′ ⇒[A∪B](D∨D′) is obtained by
an application of CRES1 to C′ ⇒[A](D∨l) and C′′ ⇒[B](D∨¬l);

2. If (D∨l)∈U i+j and (D′∨¬l) originates from a clause C′ ⇒[A](D′∨¬l)∈N i+j, then let
Ci+j+1 =Ci+j ∪{C′ ⇒[A](D∨D′)}, where C′ ⇒[A](D∨D′) is obtained by an application of
CRES2 to D∨l and C′ ⇒[A](D′∨¬l);

3. If D∨l originates from a clause C′ ⇒[A](D∨l)∈N i+j and D′∨¬l originates from a clause
C′′ ⇒〈B〉(D′∨¬l)∈N i+j, by soundness of the tableaux procedure, we have that A⊆B; let
Ci+j+1 =Ci+j ∪{C′∧C′′ ⇒〈B\A〉(D∨D′)}, where C′∧C′′ ⇒〈B\A〉(D∨D′) is obtained by
an application of CRES3 to C′ ⇒[A](D∨l) and C′′ ⇒〈B〉(D′∨¬l);

4. If D∨l∈U i+j and D′∨¬l originates from a clause C′′ ⇒〈A〉(D′∨¬l)∈N i+j, then let Ci+j+1 =
Ci+j ∪{C′ ⇒〈A〉(D∨D′)}, where C′ ⇒〈A〉(D∨D′) is obtained by an application of CRES4
to D∨l and C′ ⇒〈A〉(D′∨¬l).

Thus, there is a derivation C′
i,...,C′

i+n, which uses only the inference rules CRES1-4 and, by
construction, either [A]false or 〈A〉false are in Ci+n.

If�∈T Ci+ has been removed by E2 during the deletion phase in the construction of T Ci+ , then there
is a derivation Ci,...,Ci+n, using the the inference rules CRES1-4, such that either C ⇒[A]false
or C ⇒〈A〉false are in Ci+n. Let Ci+n+1 be the coalition problem in DSNFCL obtained from Ci+n
by adding the result of RW1 (resp. RW2) applied to C ⇒[A]false (resp. C ⇒〈A〉false) in Ci+n,
that is, if C = l0 ∧ ...∧lp, p∈N, we have that U i+n+1 =U i+n ∪{¬l0 ∨ ...∨¬lp}. Note that, because
�∈T Ci+ , � is consistent. Also note that the applications of CRES1-4 only add coalition formulae

to the tableaux T Ci
0 ,...,T Ci+n

0 . From the proof of Lemma 4.36, the construction rules applied to �

only affect the states created from (prestates created from) �. Note, however, that for all T Cj

0 , for

i< j≤n+i, there is a state�′′ ∈T Cj

0 which is exactly like�, but which might contain clauses related
to the resolvents from CRES1-4. Recall that if the application of CRES1-4 result in a coalition
clause ϕ⇒ψ , then �′′ =�∪{〈〈∅〉〉 (ϕ⇒ψ),ϕ⇒ψ,[∅]〈〈∅〉〉 (ϕ⇒ψ)}. As those clauses do not
occur negated in the set of clauses, we have that �′′ ∈SCi+n+ . As �⊆�′′, if � |=C, then �′′ |=C.
As RW1 (resp.RW2) adds a disjunction to the set of global clauses, by Lemma 4.34, there is �′′′
in SCi+n+1

0 , such that �′′ ⊆�′′′. By Lemma 4.28, as ¬l0 ∨ ...∨¬lp ∈U i+n+1, all states in T Ci+n+1+
contain ¬l0 ∨ ...∨¬lp. Now, as �′′′ |=C and �′′′ contains ¬l0 ∨ ...∨¬lp, �′′′ �∈T Ci+n+1+ , that is, �′′′
is not consistent. Finally, by Theorem 4.37, for all states s′ in T Ci+n+1+ there is a state s in T Ci+n+ ,

such that s⊆s′. However, there is at least one state in T Ci+n+ , namely �′′ |=C, for which there is no

consistent state �′′′ ∈T Ci+n+1+ such that �′′ ⊆�′′′, as states that satisfy C are removed by E1 from

T Ci+1+ . Therefore |SCi+n+1+ |< |SCi+n+ |.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 914 883–917

914 A resolution-based calculus for Coalition Logic

Summarising, an application of RW1 (resp. RW2) to C ⇒[A]false (resp. C ⇒〈A〉false) in Ci+n
adds ¬C to U i+n+1 in Ci+n+1, the next coalition problem in DSNFCL in the derivation. Thus, states
that satisfy the left-hand side of clauses that lead to deletion of�′ by E2 in the tableau for Ci will be
removed by E1 from tableau T Ci+n+1+ . This shows that if a state� does not have all needed successors,
there is some inconsistency at the propositional level of one of its successor, �′, and applications
of the inference rules RW1-2 correspond, therefore, to the elimination of the states �′′ such that
�⊆�′′ in T Ci+n+1+ .

From the above, every application of E2 can be simulated in RESCL by a derivation using IRES1
and GRES1, followed by a derivation using CRES1-4, and an application of either RW1 or RW2.
As there is no state like � in T Ci+n+1+ , if T Ci+n+1+ is not closed, we inductively apply the same steps
above, removing states which have not all required successors at each time. We note that the number
of states that can be deleted by E2 is in O(2|C|), where |C| is the size of the coalition problem in
DSNFCL |C| [9]. As the number of states being removed by E2 is finite and, by Theorem 4.37, as
the formulae added by the resolution rules do not contribute to increase the size of the tableaux
corresponding to steps of a derivation, at some point there is a tableau T Cm+ which is closed.

By induction on the number of applications of E2, if T C0 is closed, then there is a derivation
C0,...,Cm, where C =C0, Cm = (Im,Um,N m), and every Ci+1 is obtained by an application of rules
in RESCL to clauses in Ci. Moreover, because T Cm+ is closed, by Lemma 4.40, we have that false∈
Im ∪Um. Thus, if C is unsatisfiable, then there is a refutation by RESCL. �

4.5 Complexity

The satisfiability problem for CL is PSPACE-complete: the lower bound is due to the fact that KD,
which is PSPACE-hard [14], is a sublogic of CL; the upper bound is proved by showing that the size
of a satisfiability game is restricted by the modal-depth of a formula and that the construction of each
branch of such a game takes polynomial time [17].

The satisfiability problem for ATL is EXPTIME-complete: the lower bound is shown by reducing
the global consequence problem in K, which is EXPTIME-hard, to ATL; the upper bound is due to
the fact that the existence of a model tree for a formula ϕ can be checked in time exponential in the
length of ϕ [20].

The reduction of the global consequence problem in K given in [20] can straightforwardly be
modified to a reduction of the global consequence problem in K to the satisfiability of coalition
problems in DSNFCL. It follows that the satisfiability problem of coalition problems is EXPTIME-
hard. It also follows that the satisfiability problem of CL+, the language of CL plus the 〈〈∅〉〉
operator, is EXPTIME-hard.

Theorem 4.42
The satisfiability problem for coalition problems in DSNFCL is EXPTIME-hard.

Proof of Theorem 4.42. Immediate from the translation of a coalition problem in DSNFCL into
CL+, given in Section 4.4, and from [20, Lemma 4.10, page 785]. �
Theorem 4.43
The decision procedure based on RESCL is in EXPTIME.

Proof of Theorem 4.43. Let |C| be the size of the coalition problem in DSNFCL C. The tableau
structure for C has O(2|C|) states [9]. As it is shown in the completeness proof for RESCL, every

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 915 883–917

A resolution-based calculus for Coalition Logic 915

state deletion corresponds to a propositional refutation, whose complexity is in O(2|C|) [19]. Thus,
the overall complexity of RESCL is in O(2|C|)×O(2|C|), that is, O(2|C|). �

5 Conclusions

We have presented a sound, complete, and terminating resolution-based calculus for the Coalition
Logic CL, which is equivalent to the next-time fragment of ATL. The approach uses a clausal
normal form for CL: a formula to be checked for satisfiability is firstly transformed into a coalition
problem in DSNFCL, which separates the dimensions to which the resolution rules are applied. The
transformation into the normal form is satisfiability preserving and polynomially bounded by the size
of the original formula [22]. The calculus consists of six resolution inference rules and two rewriting
rules: IRES1 and GRES1 are applied to clauses in the propositional language of a coalition problem,
that is, to initial and global clauses; CRES1-4 are applied to coalition and global clauses; and the
rewriting rules RW1-2 ensure that if a set of right-hand sides of coalition and global clauses leads
to a contradiction, then the left-hand sides of those coalition clauses should not be satisfied. The
resolution-based method for CL is a syntactic variation of the resolution calculus for the next time
fragment of ATL given in [22]. Adding to the presentation in [22], we provide full completeness
proof for RESCL. Completeness is proved with respect to the tableau procedure given in [9]. We
have shown that deletions in a tableau correspond to applications of the inference rules of RESCL.
Thus, if a tableau for a coalition problem is closed, there is a refutation based on the calculus given
here. Moreover, if a tableau for a coalition problem is open, the existence of a model is ensured by
soundness of the tableau procedure.

The calculus presented here is very simple in structure, so an implementation can be obtained in
a quite straightforward way by extending existing resolution provers for either PTL or CTL, for
instance, and it is left as future work.

Future work also includes the extension of this calculus to the full language of ATL, which can
be achieved by designing a set of resolution-like inference rules to deal with eventualities, that is,
formulae which hold at some future time of a run. Usually, inference rules to deal with eventualities
are not trivial, as their application requires the search for so-called loops in the set of clauses. For
instance, in [7], the search for loops used in an application of the temporal resolution rule for PTL
is the most expensive part of the calculus. Therefore, to extend our calculus to ATL we would need
to devise a correct loop-search algorithm for ATL.

Funding

This work was supported by the National Council for the Improvement of Higher Education (CAPES
Foundation, BEX 8712/11-5) (to C.N.); EPSRC grant EP/D060451; and (1) National Natural Science
Foundation of China (Grant No. 61303018), (2) the Technology Foundation for Selected Overseas
Chinese Scholars, Bureau of Human Resources and Social Security of Beijing and (3) The Importation
and Development of High-Caliber Talents Project of Beijing Municipal Institutions (Project name:
Decision tree generation algorithm and its optimization of incomplete information systems) (to L.Z.).

References
[1] R. Alur, T. A. Henziger, and O. Kupferman. Alternating-time temporal logic. In Proceedings of

the 38th IEEE Symposium on Foundations of Computer Science, W. P. de Roever, H. Langmaack,
and A. Pnueli, eds, Lecture Notes in Computer Science, pp. 100–109. Springer, 1997.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 916 883–917

916 A resolution-based calculus for Coalition Logic

[2] R. Alur, T. A. Henziger, and O. Kupferman. Alternating-time temporal logic. Lecture Notes in
Computer Science, 1536, 23–60, 1998.

[3] R. Alur, T. A. Henziger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49, 672–713, 2002.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[5] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. ACM Transactions on
Computational Logic, 7, 108–150, 2006.

[6] G. van Drimmelen. Satisfiability in alternating-time temporal logic. In LICS ’03: Proceedings of
the 18th Annual IEEE Symposium on Logic in Computer Science, P. G. Kolaitis, ed., pp. 208–217,
IEEE Computer Society, 2003.

[7] M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transactions on
Computational Logic, 2, 2001.

[8] V. Goranko. Coalition games and alternating temporal logics. In Proceedings of the 8th
Conference on Theoretical Aspects of Rationality and Knowledge, J. van Benthem, ed., TARK
’01, pp. 259–272, Morgan Kaufmann Publishers Inc., 2001.

[9] V. Goranko and D. Shkatov. Tableau-based decision procedures for logics of strategic
ability in multiagent systems. ACM Transactions on Computational Logic, 11, 3:1–3:51,
2009.

[10] V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of alternating-
time temporal logic. Theor. Comput. Sci., 353, 93–117, 2006.

[11] R. Goré, J. Thomson, and F. Widmann. An experimental comparison of theorem provers for
CTL. In Eighteenth International Symposium on Temporal Representation and Reasoning,
TIME 2011, Lübeck , Germany, September 12-14, 2011, C. Combi, M. Leucker, and F. Wolter,
eds, pp. 49–56. IEEE, 2011.

[12] H. Hansen. Tableau Games for Coalition Logic and Alternating-time Temporal Logic – Theory
and Implementation. Master’s Thesis, University of Amsterdam, 2004.

[13] U. Hustadt and R.A. Schmidt. Scientific benchmarking with temporal logic decision procedures.
In Principles of Knowledge Representation and Reasoning: Proceedings of the Eighth
International Conference (KR’2002), D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A.
Williams, eds, pp. 533–544. Morgan Kaufmann, 2002.

[14] R. E. Ladner. The computational complexity of provability in systems of modal propositional
logic. SIAM J. Comput., 6, 467–480, 1977.

[15] C. Nalon, L. Zhang, C. Dixon, and U. Hustadt. A resolution-based calculus for coalition logic
(extended version). Technical Report ULCS-13-004, University of Liverpool, Liverpool, UK,
May 2013. Available at http://intranet.csc.liv.ac.uk/research/techreports/?id=ULCS-13-004.

[16] M. Pauly. Logic for Social Software. PhD Thesis, University of Amsterdam, 2001. Dissertation
Series 2001-10.

[17] M. Pauly. A modal logic for coalitional power in games. Journal of Logic and Computation,
12, 149–166, 2002.

[18] D. A. Plaisted and S. A. Greenbaum. A structure-preserving clause form translation. Journal of
Symbolic Computation, 2, 293–304, 1986.

[19] J. A. Robinson. A Machine–oriented logic based on the resolution principle. ACM Journal, 12,
23–41, 1965.

[20] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed ExpTime-
complete. Journal of Logic and Computation, 16, 765–787, 2006.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

[12:38 3/7/2014 ext074.tex] LogCom: Journal of Logic and Computation Page: 917 883–917

A resolution-based calculus for Coalition Logic 917

[21] P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 110–111,
119–136, 1985.

[22] L. Zhang. Clausal Reasoning for Branching-time Logics. PhD Thesis, University of Liverpool,
2010.

Received 22 May 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/24/4/883/1019942 by guest on 10 April 2024

	A resolution-based calculus for Coalition Logic
	1 Introduction
	2 Coalition logic
	3 Resolution calculus
	4 Correctness results
	5 Conclusions

